parity_lr5e-4_batch128_train1-24_eval25

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6932
  • Accuracy: 0.503

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 128
  • eval_batch_size: 512
  • seed: 23452399
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0 0 3.1802 0.0
0.6348 0.0043 100 0.7304 0.4995
0.496 0.0085 200 0.7047 0.495
0.4587 0.0128 300 0.7099 0.503
0.5157 0.0171 400 0.6995 0.5008
0.4757 0.0213 500 0.7055 0.4977
0.4381 0.0256 600 0.7905 0.4994
0.4112 0.0299 700 0.7068 0.5029
0.4687 0.0341 800 0.6958 0.4993
0.6409 0.0384 900 0.6983 0.4973
0.4482 0.0427 1000 0.6928 0.4994
0.4199 0.0469 1100 0.6920 0.4829
0.6614 0.0512 1200 0.6997 0.4996
0.5764 0.0555 1300 0.6960 0.4987
0.6243 0.0597 1400 0.6934 0.5001
0.67 0.0640 1500 0.7071 0.4992
0.6491 0.0683 1600 0.6960 0.5008
0.6874 0.0725 1700 0.6911 0.4871
0.6815 0.0768 1800 0.7413 0.4992
0.6497 0.0811 1900 0.6955 0.4992
0.6686 0.0853 2000 0.6960 0.5008
0.6624 0.0896 2100 0.6995 0.4992
0.6589 0.0939 2200 0.7005 0.4992
0.6788 0.0981 2300 0.6958 0.4992
0.6665 0.1024 2400 0.6953 0.4992
0.6473 0.1067 2500 0.7014 0.4992
0.682 0.1109 2600 0.6971 0.4992
0.6642 0.1152 2700 0.7000 0.5008
0.6411 0.1195 2800 0.6955 0.4992
0.6611 0.1237 2900 0.6978 0.4992
0.6501 0.1280 3000 0.6939 0.4992
0.6535 0.1323 3100 0.6963 0.4992
0.6507 0.1365 3200 0.6933 0.4992
0.6675 0.1408 3300 0.6943 0.4992
0.6466 0.1451 3400 0.6935 0.5008
0.6515 0.1493 3500 0.7037 0.4992
0.6748 0.1536 3600 0.6942 0.4992
0.6409 0.1579 3700 0.6934 0.5008
0.6628 0.1621 3800 0.6968 0.4992
0.6386 0.1664 3900 0.6946 0.4992
0.6525 0.1707 4000 0.6954 0.4992
0.6857 0.1749 4100 0.6946 0.4992
0.65 0.1792 4200 0.6937 0.5008
0.6695 0.1835 4300 0.6942 0.5008
0.6676 0.1877 4400 0.6941 0.5008
0.6591 0.1920 4500 0.6972 0.5008
0.6537 0.1963 4600 0.6932 0.4992
0.6771 0.2005 4700 0.6935 0.5008
0.5977 0.2048 4800 0.6938 0.4992
0.6751 0.2091 4900 0.6938 0.5008
0.6611 0.2133 5000 0.6962 0.5008
0.6913 0.2176 5100 0.6932 0.4992
0.6444 0.2219 5200 0.6935 0.5008
0.6526 0.2261 5300 0.6939 0.4992
0.6554 0.2304 5400 0.6966 0.4992
0.6638 0.2347 5500 0.6956 0.5008
0.673 0.2389 5600 0.6933 0.5008
0.6423 0.2432 5700 0.6933 0.5008
0.672 0.2475 5800 0.6947 0.4992
0.6539 0.2517 5900 0.6956 0.4992
0.6319 0.2560 6000 0.6957 0.4992
0.6613 0.2603 6100 0.6934 0.497
0.6808 0.2645 6200 0.6996 0.5008
0.6866 0.2688 6300 0.6952 0.5008
0.6544 0.2731 6400 0.6936 0.4992
0.6663 0.2773 6500 0.6933 0.4992
0.6594 0.2816 6600 0.6938 0.4992
0.6618 0.2859 6700 0.6959 0.4992
0.6683 0.2901 6800 0.6939 0.4992
0.6371 0.2944 6900 0.6932 0.5008
0.6405 0.2987 7000 0.6947 0.4992
0.6831 0.3029 7100 0.6934 0.5008
0.6585 0.3072 7200 0.6934 0.4992
0.665 0.3115 7300 0.6942 0.5008
0.6593 0.3157 7400 0.6940 0.4992
0.6699 0.3200 7500 0.6956 0.5008
0.6724 0.3243 7600 0.6934 0.497
0.6669 0.3285 7700 0.6934 0.497
0.6518 0.3328 7800 0.6936 0.4992
0.676 0.3371 7900 0.6939 0.497
0.6865 0.3413 8000 0.6968 0.4992
0.676 0.3456 8100 0.6947 0.4992
0.6695 0.3499 8200 0.6933 0.5008
0.6756 0.3541 8300 0.6934 0.5008
0.6601 0.3584 8400 0.6933 0.497
0.627 0.3627 8500 0.6936 0.4992
0.6727 0.3669 8600 0.6936 0.497
0.6514 0.3712 8700 0.6939 0.5008
0.67 0.3755 8800 0.6943 0.4992
0.6805 0.3797 8900 0.6945 0.4992
0.6675 0.3840 9000 0.6937 0.497
0.6522 0.3883 9100 0.6937 0.497
0.6502 0.3925 9200 0.6935 0.5008
0.6392 0.3968 9300 0.6940 0.4992
0.6593 0.4011 9400 0.6935 0.497
0.6567 0.4053 9500 0.6937 0.4992
0.6888 0.4096 9600 0.6938 0.497
0.6795 0.4139 9700 0.6954 0.4992
0.6627 0.4181 9800 0.6940 0.497
0.6549 0.4224 9900 0.6936 0.497
0.6688 0.4267 10000 0.6959 0.4992
0.6685 0.4309 10100 0.6936 0.497
0.6833 0.4352 10200 0.6950 0.5008
0.6541 0.4395 10300 0.6943 0.497
0.6533 0.4437 10400 0.6945 0.497
0.6626 0.4480 10500 0.6948 0.497
0.6562 0.4523 10600 0.6941 0.497
0.6662 0.4565 10700 0.6939 0.497
0.6585 0.4608 10800 0.6943 0.497
0.6494 0.4651 10900 0.6935 0.497
0.6808 0.4693 11000 0.6935 0.497
0.6788 0.4736 11100 0.6945 0.4992
0.6333 0.4779 11200 0.6940 0.4992
0.6637 0.4821 11300 0.6950 0.4992
0.6522 0.4864 11400 0.6931 0.4994
0.653 0.4907 11500 0.6942 0.4992
0.6459 0.4949 11600 0.6935 0.497
0.6547 0.4992 11700 0.6933 0.497
0.6374 0.5035 11800 0.6940 0.4992
0.6451 0.5077 11900 0.6934 0.4992
0.686 0.5120 12000 0.6934 0.497
0.6487 0.5163 12100 0.6933 0.497
0.645 0.5205 12200 0.6945 0.4992
0.6364 0.5248 12300 0.6932 0.4992
0.6806 0.5291 12400 0.6955 0.4992
0.6406 0.5333 12500 0.6938 0.4992
0.6705 0.5376 12600 0.6942 0.5008
0.6512 0.5419 12700 0.6960 0.4992
0.6752 0.5461 12800 0.6932 0.5008
0.6762 0.5504 12900 0.6947 0.5008
0.6423 0.5547 13000 0.6933 0.497
0.6543 0.5589 13100 0.6934 0.5008
0.6535 0.5632 13200 0.6933 0.497
0.6601 0.5675 13300 0.6932 0.497
0.6724 0.5717 13400 0.6932 0.4992
0.6531 0.5760 13500 0.6935 0.5008
0.6449 0.5803 13600 0.6951 0.5008
0.656 0.5845 13700 0.6933 0.4992
0.612 0.5888 13800 0.6962 0.5008
0.6618 0.5931 13900 0.6932 0.4992
0.6624 0.5973 14000 0.6934 0.5008
0.6862 0.6016 14100 0.6946 0.4992
0.669 0.6059 14200 0.6933 0.497
0.6514 0.6101 14300 0.6936 0.5008
0.6685 0.6144 14400 0.6934 0.5008
0.6426 0.6187 14500 0.6934 0.5008
0.6354 0.6229 14600 0.6934 0.4992
0.6744 0.6272 14700 0.6934 0.5008
0.6609 0.6315 14800 0.6931 0.503
0.6784 0.6357 14900 0.6932 0.5008
0.6813 0.6400 15000 0.6938 0.5008
0.6871 0.6443 15100 0.6932 0.4992
0.651 0.6485 15200 0.6933 0.5008
0.6518 0.6528 15300 0.6932 0.5008
0.6601 0.6571 15400 0.6936 0.4992
0.6222 0.6613 15500 0.6932 0.4992
0.689 0.6656 15600 0.6933 0.4992
0.6485 0.6699 15700 0.6936 0.5008
0.6439 0.6741 15800 0.6933 0.5008
0.6786 0.6784 15900 0.6931 0.503
0.6377 0.6827 16000 0.6934 0.5008
0.6447 0.6869 16100 0.6932 0.5008
0.654 0.6912 16200 0.6934 0.5008
0.6317 0.6955 16300 0.6933 0.5008
0.6414 0.6997 16400 0.6932 0.5008
0.6556 0.7040 16500 0.6934 0.5008
0.65 0.7083 16600 0.6934 0.497
0.6511 0.7125 16700 0.6932 0.497
0.6405 0.7168 16800 0.6932 0.5008
0.6476 0.7211 16900 0.6933 0.5008
0.6543 0.7253 17000 0.6932 0.503
0.6758 0.7296 17100 0.6934 0.5008
0.6489 0.7339 17200 0.6934 0.4992
0.6396 0.7381 17300 0.6931 0.5024
0.6496 0.7424 17400 0.6931 0.503
0.6559 0.7467 17500 0.6931 0.503
0.6517 0.7509 17600 0.6936 0.5008
0.6662 0.7552 17700 0.6931 0.503
0.6735 0.7595 17800 0.6936 0.497
0.6632 0.7637 17900 0.6937 0.497
0.623 0.7680 18000 0.6941 0.497
0.6651 0.7723 18100 0.6934 0.497
0.6469 0.7765 18200 0.6934 0.4992
0.6542 0.7808 18300 0.6958 0.5008
0.6319 0.7850 18400 0.6933 0.4994
0.6524 0.7893 18500 0.6934 0.4992
0.602 0.7936 18600 0.6932 0.5008
0.5984 0.7978 18700 0.6934 0.4992
0.6227 0.8021 18800 0.6932 0.4992
0.6199 0.8064 18900 0.6932 0.5008
0.6047 0.8106 19000 0.6935 0.5008
0.6261 0.8149 19100 0.6934 0.5008
0.5993 0.8192 19200 0.6939 0.5008
0.5848 0.8234 19300 0.6932 0.4992
0.6157 0.8277 19400 0.6932 0.497
0.6149 0.8320 19500 0.6932 0.4972
0.6331 0.8362 19600 0.6932 0.5008
0.672 0.8405 19700 0.6936 0.5008
0.6172 0.8448 19800 0.6936 0.5008
0.6183 0.8490 19900 0.6937 0.5008
0.5877 0.8533 20000 0.6932 0.5008
0.5834 0.8576 20100 0.6933 0.5007
0.6132 0.8618 20200 0.6932 0.5008
0.6063 0.8661 20300 0.6932 0.5024
0.6058 0.8704 20400 0.6934 0.5005
0.6285 0.8746 20500 0.6933 0.4991
0.5617 0.8789 20600 0.6948 0.5008
0.5896 0.8832 20700 0.6933 0.503
0.579 0.8874 20800 0.6932 0.503
0.5868 0.8917 20900 0.6932 0.503
0.5423 0.8960 21000 0.6933 0.4937
0.5743 0.9002 21100 0.6937 0.4992
0.5245 0.9045 21200 0.6934 0.5008
0.5347 0.9088 21300 0.6933 0.4948
0.6894 0.9130 21400 0.6933 0.4965
0.5917 0.9173 21500 0.6938 0.5008
0.5395 0.9216 21600 0.6932 0.4999
0.5591 0.9258 21700 0.6933 0.4992
0.5542 0.9301 21800 0.6938 0.5008
0.5796 0.9344 21900 0.6936 0.4968
0.6201 0.9386 22000 0.6935 0.4962
0.5537 0.9429 22100 0.6935 0.4942
0.722 0.9472 22200 0.6931 0.503
0.5787 0.9514 22300 0.6938 0.5008
0.5721 0.9557 22400 0.6937 0.5007
0.5812 0.9600 22500 0.6933 0.4928
0.5312 0.9642 22600 0.6935 0.5008
0.6068 0.9685 22700 0.6934 0.4975
0.5745 0.9728 22800 0.6932 0.4958
0.5653 0.9770 22900 0.6932 0.4986
0.5967 0.9813 23000 0.6932 0.5029
0.5685 0.9856 23100 0.6932 0.503
0.5604 0.9898 23200 0.6932 0.503
0.5551 0.9941 23300 0.6932 0.503
0.5532 0.9984 23400 0.6932 0.503

Framework versions

  • Transformers 4.46.0
  • Pytorch 2.5.1
  • Datasets 3.1.0
  • Tokenizers 0.20.1
Downloads last month
3
Safetensors
Model size
10.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support