parity_lr5e-4_batch128_train1-24_eval25
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6932
- Accuracy: 0.503
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 512
- seed: 23452399
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0 | 0 | 3.1802 | 0.0 |
0.6348 | 0.0043 | 100 | 0.7304 | 0.4995 |
0.496 | 0.0085 | 200 | 0.7047 | 0.495 |
0.4587 | 0.0128 | 300 | 0.7099 | 0.503 |
0.5157 | 0.0171 | 400 | 0.6995 | 0.5008 |
0.4757 | 0.0213 | 500 | 0.7055 | 0.4977 |
0.4381 | 0.0256 | 600 | 0.7905 | 0.4994 |
0.4112 | 0.0299 | 700 | 0.7068 | 0.5029 |
0.4687 | 0.0341 | 800 | 0.6958 | 0.4993 |
0.6409 | 0.0384 | 900 | 0.6983 | 0.4973 |
0.4482 | 0.0427 | 1000 | 0.6928 | 0.4994 |
0.4199 | 0.0469 | 1100 | 0.6920 | 0.4829 |
0.6614 | 0.0512 | 1200 | 0.6997 | 0.4996 |
0.5764 | 0.0555 | 1300 | 0.6960 | 0.4987 |
0.6243 | 0.0597 | 1400 | 0.6934 | 0.5001 |
0.67 | 0.0640 | 1500 | 0.7071 | 0.4992 |
0.6491 | 0.0683 | 1600 | 0.6960 | 0.5008 |
0.6874 | 0.0725 | 1700 | 0.6911 | 0.4871 |
0.6815 | 0.0768 | 1800 | 0.7413 | 0.4992 |
0.6497 | 0.0811 | 1900 | 0.6955 | 0.4992 |
0.6686 | 0.0853 | 2000 | 0.6960 | 0.5008 |
0.6624 | 0.0896 | 2100 | 0.6995 | 0.4992 |
0.6589 | 0.0939 | 2200 | 0.7005 | 0.4992 |
0.6788 | 0.0981 | 2300 | 0.6958 | 0.4992 |
0.6665 | 0.1024 | 2400 | 0.6953 | 0.4992 |
0.6473 | 0.1067 | 2500 | 0.7014 | 0.4992 |
0.682 | 0.1109 | 2600 | 0.6971 | 0.4992 |
0.6642 | 0.1152 | 2700 | 0.7000 | 0.5008 |
0.6411 | 0.1195 | 2800 | 0.6955 | 0.4992 |
0.6611 | 0.1237 | 2900 | 0.6978 | 0.4992 |
0.6501 | 0.1280 | 3000 | 0.6939 | 0.4992 |
0.6535 | 0.1323 | 3100 | 0.6963 | 0.4992 |
0.6507 | 0.1365 | 3200 | 0.6933 | 0.4992 |
0.6675 | 0.1408 | 3300 | 0.6943 | 0.4992 |
0.6466 | 0.1451 | 3400 | 0.6935 | 0.5008 |
0.6515 | 0.1493 | 3500 | 0.7037 | 0.4992 |
0.6748 | 0.1536 | 3600 | 0.6942 | 0.4992 |
0.6409 | 0.1579 | 3700 | 0.6934 | 0.5008 |
0.6628 | 0.1621 | 3800 | 0.6968 | 0.4992 |
0.6386 | 0.1664 | 3900 | 0.6946 | 0.4992 |
0.6525 | 0.1707 | 4000 | 0.6954 | 0.4992 |
0.6857 | 0.1749 | 4100 | 0.6946 | 0.4992 |
0.65 | 0.1792 | 4200 | 0.6937 | 0.5008 |
0.6695 | 0.1835 | 4300 | 0.6942 | 0.5008 |
0.6676 | 0.1877 | 4400 | 0.6941 | 0.5008 |
0.6591 | 0.1920 | 4500 | 0.6972 | 0.5008 |
0.6537 | 0.1963 | 4600 | 0.6932 | 0.4992 |
0.6771 | 0.2005 | 4700 | 0.6935 | 0.5008 |
0.5977 | 0.2048 | 4800 | 0.6938 | 0.4992 |
0.6751 | 0.2091 | 4900 | 0.6938 | 0.5008 |
0.6611 | 0.2133 | 5000 | 0.6962 | 0.5008 |
0.6913 | 0.2176 | 5100 | 0.6932 | 0.4992 |
0.6444 | 0.2219 | 5200 | 0.6935 | 0.5008 |
0.6526 | 0.2261 | 5300 | 0.6939 | 0.4992 |
0.6554 | 0.2304 | 5400 | 0.6966 | 0.4992 |
0.6638 | 0.2347 | 5500 | 0.6956 | 0.5008 |
0.673 | 0.2389 | 5600 | 0.6933 | 0.5008 |
0.6423 | 0.2432 | 5700 | 0.6933 | 0.5008 |
0.672 | 0.2475 | 5800 | 0.6947 | 0.4992 |
0.6539 | 0.2517 | 5900 | 0.6956 | 0.4992 |
0.6319 | 0.2560 | 6000 | 0.6957 | 0.4992 |
0.6613 | 0.2603 | 6100 | 0.6934 | 0.497 |
0.6808 | 0.2645 | 6200 | 0.6996 | 0.5008 |
0.6866 | 0.2688 | 6300 | 0.6952 | 0.5008 |
0.6544 | 0.2731 | 6400 | 0.6936 | 0.4992 |
0.6663 | 0.2773 | 6500 | 0.6933 | 0.4992 |
0.6594 | 0.2816 | 6600 | 0.6938 | 0.4992 |
0.6618 | 0.2859 | 6700 | 0.6959 | 0.4992 |
0.6683 | 0.2901 | 6800 | 0.6939 | 0.4992 |
0.6371 | 0.2944 | 6900 | 0.6932 | 0.5008 |
0.6405 | 0.2987 | 7000 | 0.6947 | 0.4992 |
0.6831 | 0.3029 | 7100 | 0.6934 | 0.5008 |
0.6585 | 0.3072 | 7200 | 0.6934 | 0.4992 |
0.665 | 0.3115 | 7300 | 0.6942 | 0.5008 |
0.6593 | 0.3157 | 7400 | 0.6940 | 0.4992 |
0.6699 | 0.3200 | 7500 | 0.6956 | 0.5008 |
0.6724 | 0.3243 | 7600 | 0.6934 | 0.497 |
0.6669 | 0.3285 | 7700 | 0.6934 | 0.497 |
0.6518 | 0.3328 | 7800 | 0.6936 | 0.4992 |
0.676 | 0.3371 | 7900 | 0.6939 | 0.497 |
0.6865 | 0.3413 | 8000 | 0.6968 | 0.4992 |
0.676 | 0.3456 | 8100 | 0.6947 | 0.4992 |
0.6695 | 0.3499 | 8200 | 0.6933 | 0.5008 |
0.6756 | 0.3541 | 8300 | 0.6934 | 0.5008 |
0.6601 | 0.3584 | 8400 | 0.6933 | 0.497 |
0.627 | 0.3627 | 8500 | 0.6936 | 0.4992 |
0.6727 | 0.3669 | 8600 | 0.6936 | 0.497 |
0.6514 | 0.3712 | 8700 | 0.6939 | 0.5008 |
0.67 | 0.3755 | 8800 | 0.6943 | 0.4992 |
0.6805 | 0.3797 | 8900 | 0.6945 | 0.4992 |
0.6675 | 0.3840 | 9000 | 0.6937 | 0.497 |
0.6522 | 0.3883 | 9100 | 0.6937 | 0.497 |
0.6502 | 0.3925 | 9200 | 0.6935 | 0.5008 |
0.6392 | 0.3968 | 9300 | 0.6940 | 0.4992 |
0.6593 | 0.4011 | 9400 | 0.6935 | 0.497 |
0.6567 | 0.4053 | 9500 | 0.6937 | 0.4992 |
0.6888 | 0.4096 | 9600 | 0.6938 | 0.497 |
0.6795 | 0.4139 | 9700 | 0.6954 | 0.4992 |
0.6627 | 0.4181 | 9800 | 0.6940 | 0.497 |
0.6549 | 0.4224 | 9900 | 0.6936 | 0.497 |
0.6688 | 0.4267 | 10000 | 0.6959 | 0.4992 |
0.6685 | 0.4309 | 10100 | 0.6936 | 0.497 |
0.6833 | 0.4352 | 10200 | 0.6950 | 0.5008 |
0.6541 | 0.4395 | 10300 | 0.6943 | 0.497 |
0.6533 | 0.4437 | 10400 | 0.6945 | 0.497 |
0.6626 | 0.4480 | 10500 | 0.6948 | 0.497 |
0.6562 | 0.4523 | 10600 | 0.6941 | 0.497 |
0.6662 | 0.4565 | 10700 | 0.6939 | 0.497 |
0.6585 | 0.4608 | 10800 | 0.6943 | 0.497 |
0.6494 | 0.4651 | 10900 | 0.6935 | 0.497 |
0.6808 | 0.4693 | 11000 | 0.6935 | 0.497 |
0.6788 | 0.4736 | 11100 | 0.6945 | 0.4992 |
0.6333 | 0.4779 | 11200 | 0.6940 | 0.4992 |
0.6637 | 0.4821 | 11300 | 0.6950 | 0.4992 |
0.6522 | 0.4864 | 11400 | 0.6931 | 0.4994 |
0.653 | 0.4907 | 11500 | 0.6942 | 0.4992 |
0.6459 | 0.4949 | 11600 | 0.6935 | 0.497 |
0.6547 | 0.4992 | 11700 | 0.6933 | 0.497 |
0.6374 | 0.5035 | 11800 | 0.6940 | 0.4992 |
0.6451 | 0.5077 | 11900 | 0.6934 | 0.4992 |
0.686 | 0.5120 | 12000 | 0.6934 | 0.497 |
0.6487 | 0.5163 | 12100 | 0.6933 | 0.497 |
0.645 | 0.5205 | 12200 | 0.6945 | 0.4992 |
0.6364 | 0.5248 | 12300 | 0.6932 | 0.4992 |
0.6806 | 0.5291 | 12400 | 0.6955 | 0.4992 |
0.6406 | 0.5333 | 12500 | 0.6938 | 0.4992 |
0.6705 | 0.5376 | 12600 | 0.6942 | 0.5008 |
0.6512 | 0.5419 | 12700 | 0.6960 | 0.4992 |
0.6752 | 0.5461 | 12800 | 0.6932 | 0.5008 |
0.6762 | 0.5504 | 12900 | 0.6947 | 0.5008 |
0.6423 | 0.5547 | 13000 | 0.6933 | 0.497 |
0.6543 | 0.5589 | 13100 | 0.6934 | 0.5008 |
0.6535 | 0.5632 | 13200 | 0.6933 | 0.497 |
0.6601 | 0.5675 | 13300 | 0.6932 | 0.497 |
0.6724 | 0.5717 | 13400 | 0.6932 | 0.4992 |
0.6531 | 0.5760 | 13500 | 0.6935 | 0.5008 |
0.6449 | 0.5803 | 13600 | 0.6951 | 0.5008 |
0.656 | 0.5845 | 13700 | 0.6933 | 0.4992 |
0.612 | 0.5888 | 13800 | 0.6962 | 0.5008 |
0.6618 | 0.5931 | 13900 | 0.6932 | 0.4992 |
0.6624 | 0.5973 | 14000 | 0.6934 | 0.5008 |
0.6862 | 0.6016 | 14100 | 0.6946 | 0.4992 |
0.669 | 0.6059 | 14200 | 0.6933 | 0.497 |
0.6514 | 0.6101 | 14300 | 0.6936 | 0.5008 |
0.6685 | 0.6144 | 14400 | 0.6934 | 0.5008 |
0.6426 | 0.6187 | 14500 | 0.6934 | 0.5008 |
0.6354 | 0.6229 | 14600 | 0.6934 | 0.4992 |
0.6744 | 0.6272 | 14700 | 0.6934 | 0.5008 |
0.6609 | 0.6315 | 14800 | 0.6931 | 0.503 |
0.6784 | 0.6357 | 14900 | 0.6932 | 0.5008 |
0.6813 | 0.6400 | 15000 | 0.6938 | 0.5008 |
0.6871 | 0.6443 | 15100 | 0.6932 | 0.4992 |
0.651 | 0.6485 | 15200 | 0.6933 | 0.5008 |
0.6518 | 0.6528 | 15300 | 0.6932 | 0.5008 |
0.6601 | 0.6571 | 15400 | 0.6936 | 0.4992 |
0.6222 | 0.6613 | 15500 | 0.6932 | 0.4992 |
0.689 | 0.6656 | 15600 | 0.6933 | 0.4992 |
0.6485 | 0.6699 | 15700 | 0.6936 | 0.5008 |
0.6439 | 0.6741 | 15800 | 0.6933 | 0.5008 |
0.6786 | 0.6784 | 15900 | 0.6931 | 0.503 |
0.6377 | 0.6827 | 16000 | 0.6934 | 0.5008 |
0.6447 | 0.6869 | 16100 | 0.6932 | 0.5008 |
0.654 | 0.6912 | 16200 | 0.6934 | 0.5008 |
0.6317 | 0.6955 | 16300 | 0.6933 | 0.5008 |
0.6414 | 0.6997 | 16400 | 0.6932 | 0.5008 |
0.6556 | 0.7040 | 16500 | 0.6934 | 0.5008 |
0.65 | 0.7083 | 16600 | 0.6934 | 0.497 |
0.6511 | 0.7125 | 16700 | 0.6932 | 0.497 |
0.6405 | 0.7168 | 16800 | 0.6932 | 0.5008 |
0.6476 | 0.7211 | 16900 | 0.6933 | 0.5008 |
0.6543 | 0.7253 | 17000 | 0.6932 | 0.503 |
0.6758 | 0.7296 | 17100 | 0.6934 | 0.5008 |
0.6489 | 0.7339 | 17200 | 0.6934 | 0.4992 |
0.6396 | 0.7381 | 17300 | 0.6931 | 0.5024 |
0.6496 | 0.7424 | 17400 | 0.6931 | 0.503 |
0.6559 | 0.7467 | 17500 | 0.6931 | 0.503 |
0.6517 | 0.7509 | 17600 | 0.6936 | 0.5008 |
0.6662 | 0.7552 | 17700 | 0.6931 | 0.503 |
0.6735 | 0.7595 | 17800 | 0.6936 | 0.497 |
0.6632 | 0.7637 | 17900 | 0.6937 | 0.497 |
0.623 | 0.7680 | 18000 | 0.6941 | 0.497 |
0.6651 | 0.7723 | 18100 | 0.6934 | 0.497 |
0.6469 | 0.7765 | 18200 | 0.6934 | 0.4992 |
0.6542 | 0.7808 | 18300 | 0.6958 | 0.5008 |
0.6319 | 0.7850 | 18400 | 0.6933 | 0.4994 |
0.6524 | 0.7893 | 18500 | 0.6934 | 0.4992 |
0.602 | 0.7936 | 18600 | 0.6932 | 0.5008 |
0.5984 | 0.7978 | 18700 | 0.6934 | 0.4992 |
0.6227 | 0.8021 | 18800 | 0.6932 | 0.4992 |
0.6199 | 0.8064 | 18900 | 0.6932 | 0.5008 |
0.6047 | 0.8106 | 19000 | 0.6935 | 0.5008 |
0.6261 | 0.8149 | 19100 | 0.6934 | 0.5008 |
0.5993 | 0.8192 | 19200 | 0.6939 | 0.5008 |
0.5848 | 0.8234 | 19300 | 0.6932 | 0.4992 |
0.6157 | 0.8277 | 19400 | 0.6932 | 0.497 |
0.6149 | 0.8320 | 19500 | 0.6932 | 0.4972 |
0.6331 | 0.8362 | 19600 | 0.6932 | 0.5008 |
0.672 | 0.8405 | 19700 | 0.6936 | 0.5008 |
0.6172 | 0.8448 | 19800 | 0.6936 | 0.5008 |
0.6183 | 0.8490 | 19900 | 0.6937 | 0.5008 |
0.5877 | 0.8533 | 20000 | 0.6932 | 0.5008 |
0.5834 | 0.8576 | 20100 | 0.6933 | 0.5007 |
0.6132 | 0.8618 | 20200 | 0.6932 | 0.5008 |
0.6063 | 0.8661 | 20300 | 0.6932 | 0.5024 |
0.6058 | 0.8704 | 20400 | 0.6934 | 0.5005 |
0.6285 | 0.8746 | 20500 | 0.6933 | 0.4991 |
0.5617 | 0.8789 | 20600 | 0.6948 | 0.5008 |
0.5896 | 0.8832 | 20700 | 0.6933 | 0.503 |
0.579 | 0.8874 | 20800 | 0.6932 | 0.503 |
0.5868 | 0.8917 | 20900 | 0.6932 | 0.503 |
0.5423 | 0.8960 | 21000 | 0.6933 | 0.4937 |
0.5743 | 0.9002 | 21100 | 0.6937 | 0.4992 |
0.5245 | 0.9045 | 21200 | 0.6934 | 0.5008 |
0.5347 | 0.9088 | 21300 | 0.6933 | 0.4948 |
0.6894 | 0.9130 | 21400 | 0.6933 | 0.4965 |
0.5917 | 0.9173 | 21500 | 0.6938 | 0.5008 |
0.5395 | 0.9216 | 21600 | 0.6932 | 0.4999 |
0.5591 | 0.9258 | 21700 | 0.6933 | 0.4992 |
0.5542 | 0.9301 | 21800 | 0.6938 | 0.5008 |
0.5796 | 0.9344 | 21900 | 0.6936 | 0.4968 |
0.6201 | 0.9386 | 22000 | 0.6935 | 0.4962 |
0.5537 | 0.9429 | 22100 | 0.6935 | 0.4942 |
0.722 | 0.9472 | 22200 | 0.6931 | 0.503 |
0.5787 | 0.9514 | 22300 | 0.6938 | 0.5008 |
0.5721 | 0.9557 | 22400 | 0.6937 | 0.5007 |
0.5812 | 0.9600 | 22500 | 0.6933 | 0.4928 |
0.5312 | 0.9642 | 22600 | 0.6935 | 0.5008 |
0.6068 | 0.9685 | 22700 | 0.6934 | 0.4975 |
0.5745 | 0.9728 | 22800 | 0.6932 | 0.4958 |
0.5653 | 0.9770 | 22900 | 0.6932 | 0.4986 |
0.5967 | 0.9813 | 23000 | 0.6932 | 0.5029 |
0.5685 | 0.9856 | 23100 | 0.6932 | 0.503 |
0.5604 | 0.9898 | 23200 | 0.6932 | 0.503 |
0.5551 | 0.9941 | 23300 | 0.6932 | 0.503 |
0.5532 | 0.9984 | 23400 | 0.6932 | 0.503 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support