parity_small_lr5e-4_batch128_train1-24_eval25
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6941
- Accuracy: 0.4992
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 512
- seed: 23452399
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0 | 0 | 2.6114 | 0.0 |
2.4993 | 0.0064 | 100 | 2.4909 | 0.5008 |
2.2416 | 0.0128 | 200 | 2.2473 | 0.5008 |
2.0217 | 0.0192 | 300 | 2.0109 | 0.5008 |
1.7027 | 0.0256 | 400 | 1.7053 | 0.5008 |
1.3621 | 0.032 | 500 | 1.3582 | 0.5008 |
1.0516 | 0.0384 | 600 | 1.0504 | 0.5008 |
0.8589 | 0.0448 | 700 | 0.8587 | 0.5008 |
0.779 | 0.0512 | 800 | 0.7821 | 0.4992 |
0.7411 | 0.0576 | 900 | 0.7483 | 0.4992 |
0.7187 | 0.064 | 1000 | 0.7294 | 0.4992 |
0.7054 | 0.0704 | 1100 | 0.7175 | 0.5008 |
0.6971 | 0.0768 | 1200 | 0.7126 | 0.4992 |
0.6887 | 0.0832 | 1300 | 0.7071 | 0.4992 |
0.6651 | 0.0896 | 1400 | 0.7077 | 0.4992 |
0.6808 | 0.096 | 1500 | 0.7011 | 0.5008 |
0.687 | 0.1024 | 1600 | 0.7016 | 0.4992 |
0.6585 | 0.1088 | 1700 | 0.6986 | 0.5008 |
0.6557 | 0.1152 | 1800 | 0.6979 | 0.4992 |
0.643 | 0.1216 | 1900 | 0.6982 | 0.4992 |
0.6801 | 0.128 | 2000 | 0.6965 | 0.4992 |
0.6707 | 0.1344 | 2100 | 0.6980 | 0.4992 |
0.6639 | 0.1408 | 2200 | 0.7068 | 0.4992 |
0.6696 | 0.1472 | 2300 | 0.6954 | 0.4992 |
0.6733 | 0.1536 | 2400 | 0.7005 | 0.4992 |
0.6638 | 0.16 | 2500 | 0.6981 | 0.4992 |
0.6895 | 0.1664 | 2600 | 0.6957 | 0.4992 |
0.6313 | 0.1728 | 2700 | 0.6948 | 0.4992 |
0.6691 | 0.1792 | 2800 | 0.6995 | 0.4992 |
0.6705 | 0.1856 | 2900 | 0.7070 | 0.4992 |
0.6786 | 0.192 | 3000 | 0.6946 | 0.4992 |
0.6776 | 0.1984 | 3100 | 0.6950 | 0.4992 |
0.6729 | 0.2048 | 3200 | 0.6942 | 0.4992 |
0.6676 | 0.2112 | 3300 | 0.6944 | 0.4992 |
0.6513 | 0.2176 | 3400 | 0.6940 | 0.5008 |
0.6719 | 0.224 | 3500 | 0.6944 | 0.4992 |
0.682 | 0.2304 | 3600 | 0.6945 | 0.4992 |
0.6766 | 0.2368 | 3700 | 0.6964 | 0.4992 |
0.6604 | 0.2432 | 3800 | 0.6942 | 0.4992 |
0.6538 | 0.2496 | 3900 | 0.6964 | 0.4992 |
0.6504 | 0.256 | 4000 | 0.6938 | 0.4992 |
0.6786 | 0.2624 | 4100 | 0.6956 | 0.4992 |
0.6634 | 0.2688 | 4200 | 0.6948 | 0.4992 |
0.6722 | 0.2752 | 4300 | 0.6946 | 0.4992 |
0.6526 | 0.2816 | 4400 | 0.6971 | 0.4992 |
0.6885 | 0.288 | 4500 | 0.6938 | 0.4992 |
0.6834 | 0.2944 | 4600 | 0.6936 | 0.4992 |
0.6456 | 0.3008 | 4700 | 0.6936 | 0.5008 |
0.6551 | 0.3072 | 4800 | 0.6938 | 0.5008 |
0.675 | 0.3136 | 4900 | 0.6961 | 0.4992 |
0.6723 | 0.32 | 5000 | 0.6937 | 0.4992 |
0.6603 | 0.3264 | 5100 | 0.6944 | 0.4992 |
0.6537 | 0.3328 | 5200 | 0.6979 | 0.4992 |
0.6781 | 0.3392 | 5300 | 0.6959 | 0.4992 |
0.6506 | 0.3456 | 5400 | 0.6960 | 0.4992 |
0.6707 | 0.352 | 5500 | 0.6991 | 0.4992 |
0.6539 | 0.3584 | 5600 | 0.6957 | 0.4992 |
0.6586 | 0.3648 | 5700 | 0.6939 | 0.4992 |
0.6562 | 0.3712 | 5800 | 0.6939 | 0.4992 |
0.6806 | 0.3776 | 5900 | 0.6946 | 0.4992 |
0.6711 | 0.384 | 6000 | 0.6943 | 0.4992 |
0.6449 | 0.3904 | 6100 | 0.6944 | 0.4992 |
0.6636 | 0.3968 | 6200 | 0.6942 | 0.4992 |
0.6355 | 0.4032 | 6300 | 0.6944 | 0.4992 |
0.672 | 0.4096 | 6400 | 0.6943 | 0.4992 |
0.6672 | 0.416 | 6500 | 0.6944 | 0.4992 |
0.6521 | 0.4224 | 6600 | 0.6958 | 0.4992 |
0.6449 | 0.4288 | 6700 | 0.6934 | 0.5008 |
0.6688 | 0.4352 | 6800 | 0.6954 | 0.4992 |
0.6643 | 0.4416 | 6900 | 0.6978 | 0.4992 |
0.6491 | 0.448 | 7000 | 0.6943 | 0.4992 |
0.6732 | 0.4544 | 7100 | 0.6956 | 0.4992 |
0.6689 | 0.4608 | 7200 | 0.6953 | 0.4992 |
0.6608 | 0.4672 | 7300 | 0.6949 | 0.4992 |
0.6556 | 0.4736 | 7400 | 0.6933 | 0.4992 |
0.6499 | 0.48 | 7500 | 0.6950 | 0.4992 |
0.6472 | 0.4864 | 7600 | 0.6934 | 0.4992 |
0.6879 | 0.4928 | 7700 | 0.6934 | 0.4992 |
0.6382 | 0.4992 | 7800 | 0.6935 | 0.4992 |
0.6697 | 0.5056 | 7900 | 0.6950 | 0.4992 |
0.6726 | 0.512 | 8000 | 0.6941 | 0.4992 |
0.6584 | 0.5184 | 8100 | 0.6933 | 0.4992 |
0.6465 | 0.5248 | 8200 | 0.6943 | 0.4992 |
0.6548 | 0.5312 | 8300 | 0.6944 | 0.4992 |
0.6619 | 0.5376 | 8400 | 0.6944 | 0.4992 |
0.6655 | 0.544 | 8500 | 0.6997 | 0.4992 |
0.6613 | 0.5504 | 8600 | 0.6933 | 0.5008 |
0.6829 | 0.5568 | 8700 | 0.6945 | 0.4992 |
0.6805 | 0.5632 | 8800 | 0.6936 | 0.4992 |
0.6507 | 0.5696 | 8900 | 0.6933 | 0.4992 |
0.6657 | 0.576 | 9000 | 0.6933 | 0.4992 |
0.6604 | 0.5824 | 9100 | 0.6938 | 0.4992 |
0.6361 | 0.5888 | 9200 | 0.6934 | 0.4992 |
0.671 | 0.5952 | 9300 | 0.6943 | 0.4992 |
0.6532 | 0.6016 | 9400 | 0.6939 | 0.4992 |
0.662 | 0.608 | 9500 | 0.6937 | 0.4992 |
0.6773 | 0.6144 | 9600 | 0.6949 | 0.4992 |
0.6752 | 0.6208 | 9700 | 0.6938 | 0.4992 |
0.6553 | 0.6272 | 9800 | 0.6942 | 0.4992 |
0.665 | 0.6336 | 9900 | 0.6935 | 0.4992 |
0.6419 | 0.64 | 10000 | 0.6951 | 0.4992 |
0.6624 | 0.6464 | 10100 | 0.6946 | 0.4992 |
0.6663 | 0.6528 | 10200 | 0.6944 | 0.4992 |
0.6588 | 0.6592 | 10300 | 0.6951 | 0.4992 |
0.669 | 0.6656 | 10400 | 0.6934 | 0.4992 |
0.6813 | 0.672 | 10500 | 0.6948 | 0.4992 |
0.6588 | 0.6784 | 10600 | 0.6949 | 0.4992 |
0.6547 | 0.6848 | 10700 | 0.6937 | 0.4992 |
0.6712 | 0.6912 | 10800 | 0.6933 | 0.4992 |
0.6521 | 0.6976 | 10900 | 0.6934 | 0.4992 |
0.6496 | 0.704 | 11000 | 0.6935 | 0.4992 |
0.651 | 0.7104 | 11100 | 0.6940 | 0.4992 |
0.6719 | 0.7168 | 11200 | 0.6942 | 0.4992 |
0.6574 | 0.7232 | 11300 | 0.6951 | 0.4992 |
0.6528 | 0.7296 | 11400 | 0.6940 | 0.4992 |
0.6741 | 0.736 | 11500 | 0.6950 | 0.4992 |
0.6792 | 0.7424 | 11600 | 0.6935 | 0.4992 |
0.6738 | 0.7488 | 11700 | 0.6942 | 0.4992 |
0.6525 | 0.7552 | 11800 | 0.6944 | 0.4992 |
0.6648 | 0.7616 | 11900 | 0.6940 | 0.4992 |
0.6763 | 0.768 | 12000 | 0.6945 | 0.4992 |
0.6537 | 0.7744 | 12100 | 0.6937 | 0.4992 |
0.644 | 0.7808 | 12200 | 0.6947 | 0.4992 |
0.6445 | 0.7872 | 12300 | 0.6942 | 0.4992 |
0.6474 | 0.7936 | 12400 | 0.6934 | 0.4992 |
0.663 | 0.8 | 12500 | 0.6938 | 0.4992 |
0.6703 | 0.8064 | 12600 | 0.6947 | 0.4992 |
0.6577 | 0.8128 | 12700 | 0.6940 | 0.4992 |
0.6539 | 0.8192 | 12800 | 0.6943 | 0.4992 |
0.6768 | 0.8256 | 12900 | 0.6945 | 0.4992 |
0.6804 | 0.832 | 13000 | 0.6952 | 0.4992 |
0.677 | 0.8384 | 13100 | 0.6939 | 0.4992 |
0.6696 | 0.8448 | 13200 | 0.6958 | 0.4992 |
0.6533 | 0.8512 | 13300 | 0.6944 | 0.4992 |
0.6832 | 0.8576 | 13400 | 0.6942 | 0.4992 |
0.664 | 0.864 | 13500 | 0.6940 | 0.4992 |
0.6612 | 0.8704 | 13600 | 0.6937 | 0.4992 |
0.6603 | 0.8768 | 13700 | 0.6940 | 0.4992 |
0.6747 | 0.8832 | 13800 | 0.6945 | 0.4992 |
0.6457 | 0.8896 | 13900 | 0.6941 | 0.4992 |
0.6596 | 0.896 | 14000 | 0.6940 | 0.4992 |
0.6714 | 0.9024 | 14100 | 0.6941 | 0.4992 |
0.69 | 0.9088 | 14200 | 0.6944 | 0.4992 |
0.6546 | 0.9152 | 14300 | 0.6941 | 0.4992 |
0.6511 | 0.9216 | 14400 | 0.6944 | 0.4992 |
0.6557 | 0.928 | 14500 | 0.6947 | 0.4992 |
0.6664 | 0.9344 | 14600 | 0.6942 | 0.4992 |
0.6666 | 0.9408 | 14700 | 0.6941 | 0.4992 |
0.6412 | 0.9472 | 14800 | 0.6941 | 0.4992 |
0.6634 | 0.9536 | 14900 | 0.6941 | 0.4992 |
0.6559 | 0.96 | 15000 | 0.6941 | 0.4992 |
0.6566 | 0.9664 | 15100 | 0.6940 | 0.4992 |
0.6807 | 0.9728 | 15200 | 0.6940 | 0.4992 |
0.668 | 0.9792 | 15300 | 0.6940 | 0.4992 |
0.6584 | 0.9856 | 15400 | 0.6941 | 0.4992 |
0.6794 | 0.992 | 15500 | 0.6941 | 0.4992 |
0.6584 | 0.9984 | 15600 | 0.6941 | 0.4992 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support