reverse_add_replicate
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0000
- Accuracy: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0 | 0 | 2.6817 | 0.0 |
4.4613 | 0.0064 | 100 | 2.3109 | 0.0 |
4.335 | 0.0128 | 200 | 2.2529 | 0.0 |
4.2668 | 0.0192 | 300 | 2.1999 | 0.0 |
4.1908 | 0.0256 | 400 | 2.2754 | 0.0 |
4.2314 | 0.032 | 500 | 2.2359 | 0.0 |
3.6347 | 0.0384 | 600 | 1.8769 | 0.0 |
3.4763 | 0.0448 | 700 | 1.9187 | 0.0 |
3.1229 | 0.0512 | 800 | 1.9776 | 0.0 |
2.8398 | 0.0576 | 900 | 1.6601 | 0.0 |
3.0181 | 0.064 | 1000 | 1.6472 | 0.0 |
3.0209 | 0.0704 | 1100 | 1.6118 | 0.0 |
2.5603 | 0.0768 | 1200 | 1.3266 | 0.002 |
2.6247 | 0.0832 | 1300 | 1.4725 | 0.0 |
2.502 | 0.0896 | 1400 | 1.4013 | 0.0 |
2.6392 | 0.096 | 1500 | 1.6963 | 0.0 |
2.3297 | 0.1024 | 1600 | 1.5349 | 0.001 |
2.4639 | 0.1088 | 1700 | 1.3084 | 0.001 |
2.4555 | 0.1152 | 1800 | 1.3022 | 0.0 |
2.1326 | 0.1216 | 1900 | 1.2985 | 0.002 |
2.2766 | 0.128 | 2000 | 1.2175 | 0.0 |
2.5442 | 0.1344 | 2100 | 1.2973 | 0.0 |
2.3005 | 0.1408 | 2200 | 1.4224 | 0.0 |
2.4872 | 0.1472 | 2300 | 1.3877 | 0.001 |
2.3095 | 0.1536 | 2400 | 1.2081 | 0.002 |
2.3245 | 0.16 | 2500 | 1.2708 | 0.001 |
2.6165 | 0.1664 | 2600 | 1.5453 | 0.001 |
2.2608 | 0.1728 | 2700 | 1.2128 | 0.002 |
2.3363 | 0.1792 | 2800 | 1.2837 | 0.002 |
2.262 | 0.1856 | 2900 | 1.2287 | 0.007 |
2.1686 | 0.192 | 3000 | 1.3750 | 0.0 |
2.3021 | 0.1984 | 3100 | 1.1819 | 0.005 |
1.8808 | 0.2048 | 3200 | 1.1540 | 0.003 |
2.5449 | 0.2112 | 3300 | 1.1970 | 0.0 |
2.1555 | 0.2176 | 3400 | 1.1703 | 0.001 |
1.8908 | 0.224 | 3500 | 1.2023 | 0.003 |
2.074 | 0.2304 | 3600 | 1.3576 | 0.002 |
2.2279 | 0.2368 | 3700 | 1.7341 | 0.0 |
2.4889 | 0.2432 | 3800 | 1.2299 | 0.003 |
2.0978 | 0.2496 | 3900 | 1.2305 | 0.0 |
2.6161 | 0.256 | 4000 | 1.8482 | 0.002 |
1.937 | 0.2624 | 4100 | 1.1050 | 0.005 |
1.9751 | 0.2688 | 4200 | 1.2011 | 0.003 |
2.1199 | 0.2752 | 4300 | 1.2652 | 0.004 |
1.3263 | 0.2816 | 4400 | 0.7553 | 0.018 |
1.6805 | 0.288 | 4500 | 1.2216 | 0.005 |
1.1079 | 0.2944 | 4600 | 0.8702 | 0.012 |
1.4584 | 0.3008 | 4700 | 1.0929 | 0.0 |
1.1793 | 0.3072 | 4800 | 0.8990 | 0.005 |
0.7387 | 0.3136 | 4900 | 0.5412 | 0.031 |
1.4369 | 0.32 | 5000 | 1.4076 | 0.057 |
0.4073 | 0.3264 | 5100 | 0.4967 | 0.384 |
0.4319 | 0.3328 | 5200 | 0.4954 | 0.22 |
0.4177 | 0.3392 | 5300 | 0.5079 | 0.461 |
0.3973 | 0.3456 | 5400 | 0.4415 | 0.377 |
0.7054 | 0.352 | 5500 | 0.6503 | 0.1 |
0.5802 | 0.3584 | 5600 | 0.8201 | 0.063 |
0.1897 | 0.3648 | 5700 | 0.2479 | 0.462 |
0.3982 | 0.3712 | 5800 | 1.3623 | 0.186 |
0.6079 | 0.3776 | 5900 | 0.9248 | 0.195 |
0.2099 | 0.384 | 6000 | 0.4132 | 0.308 |
0.1991 | 0.3904 | 6100 | 0.1490 | 0.605 |
0.4226 | 0.3968 | 6200 | 0.5506 | 0.284 |
1.0515 | 0.4032 | 6300 | 1.1107 | 0.129 |
0.1014 | 0.4096 | 6400 | 0.2367 | 0.447 |
0.2219 | 0.416 | 6500 | 0.4163 | 0.347 |
2.1345 | 0.4224 | 6600 | 1.4566 | 0.0 |
0.5009 | 0.4288 | 6700 | 0.5398 | 0.158 |
0.1368 | 0.4352 | 6800 | 0.3955 | 0.17 |
0.0253 | 0.4416 | 6900 | 0.1468 | 0.629 |
0.1325 | 0.448 | 7000 | 0.3457 | 0.467 |
0.1866 | 0.4544 | 7100 | 0.4352 | 0.313 |
0.6098 | 0.4608 | 7200 | 0.8387 | 0.16 |
0.1887 | 0.4672 | 7300 | 0.2170 | 0.453 |
0.058 | 0.4736 | 7400 | 0.0872 | 0.731 |
0.2518 | 0.48 | 7500 | 0.3798 | 0.267 |
0.0314 | 0.4864 | 7600 | 0.3710 | 0.311 |
0.5078 | 0.4928 | 7700 | 0.5315 | 0.18 |
0.0894 | 0.4992 | 7800 | 0.2551 | 0.366 |
0.0788 | 0.5056 | 7900 | 0.1619 | 0.468 |
0.6913 | 0.512 | 8000 | 0.5418 | 0.198 |
0.2068 | 0.5184 | 8100 | 0.3154 | 0.323 |
0.8031 | 0.5248 | 8200 | 0.6006 | 0.149 |
0.0841 | 0.5312 | 8300 | 0.1740 | 0.74 |
0.1649 | 0.5376 | 8400 | 0.1316 | 0.592 |
0.4631 | 0.544 | 8500 | 0.5998 | 0.226 |
0.2732 | 0.5504 | 8600 | 0.7268 | 0.168 |
0.2153 | 0.5568 | 8700 | 0.2141 | 0.4 |
0.6022 | 0.5632 | 8800 | 0.3403 | 0.412 |
0.115 | 0.5696 | 8900 | 0.0905 | 0.712 |
0.1791 | 0.576 | 9000 | 0.1527 | 0.554 |
0.2843 | 0.5824 | 9100 | 0.3514 | 0.319 |
0.0359 | 0.5888 | 9200 | 0.0447 | 0.829 |
0.018 | 0.5952 | 9300 | 0.0565 | 0.781 |
0.0363 | 0.6016 | 9400 | 0.1747 | 0.507 |
0.1352 | 0.608 | 9500 | 0.3075 | 0.498 |
0.0642 | 0.6144 | 9600 | 0.2735 | 0.475 |
0.0619 | 0.6208 | 9700 | 0.0728 | 0.773 |
0.0305 | 0.6272 | 9800 | 0.2225 | 0.694 |
0.1128 | 0.6336 | 9900 | 0.1043 | 0.649 |
0.1403 | 0.64 | 10000 | 0.0730 | 0.692 |
0.1471 | 0.6464 | 10100 | 0.1880 | 0.497 |
0.0632 | 0.6528 | 10200 | 0.1933 | 0.657 |
0.0757 | 0.6592 | 10300 | 0.0467 | 0.806 |
0.0969 | 0.6656 | 10400 | 0.3012 | 0.546 |
0.0552 | 0.672 | 10500 | 0.2214 | 0.37 |
0.0821 | 0.6784 | 10600 | 0.2411 | 0.504 |
0.0254 | 0.6848 | 10700 | 0.1192 | 0.619 |
0.0058 | 0.6912 | 10800 | 0.0409 | 0.901 |
0.0343 | 0.6976 | 10900 | 0.1508 | 0.671 |
0.0357 | 0.704 | 11000 | 0.0646 | 0.766 |
0.1314 | 0.7104 | 11100 | 0.1610 | 0.558 |
0.3291 | 0.7168 | 11200 | 1.1259 | 0.282 |
0.0217 | 0.7232 | 11300 | 0.0448 | 0.855 |
0.0486 | 0.7296 | 11400 | 0.1727 | 0.719 |
0.0055 | 0.736 | 11500 | 0.0911 | 0.715 |
0.028 | 0.7424 | 11600 | 0.0281 | 0.904 |
0.0518 | 0.7488 | 11700 | 0.2969 | 0.421 |
0.0049 | 0.7552 | 11800 | 0.0311 | 0.871 |
0.0044 | 0.7616 | 11900 | 0.0091 | 0.955 |
0.0158 | 0.768 | 12000 | 0.0036 | 0.979 |
0.0015 | 0.7744 | 12100 | 0.0169 | 0.919 |
0.0099 | 0.7808 | 12200 | 0.0078 | 0.961 |
0.0098 | 0.7872 | 12300 | 0.0123 | 0.952 |
0.0006 | 0.7936 | 12400 | 0.0065 | 0.966 |
0.0015 | 0.8 | 12500 | 0.0058 | 0.971 |
0.0 | 0.8064 | 12600 | 0.0031 | 0.984 |
0.0002 | 0.8128 | 12700 | 0.0124 | 0.961 |
0.0002 | 0.8192 | 12800 | 0.0024 | 0.988 |
0.0 | 0.8256 | 12900 | 0.0034 | 0.987 |
0.0 | 0.832 | 13000 | 0.0055 | 0.98 |
0.0 | 0.8384 | 13100 | 0.0063 | 0.979 |
0.0063 | 0.8448 | 13200 | 0.0082 | 0.958 |
0.0003 | 0.8512 | 13300 | 0.0016 | 0.993 |
0.0001 | 0.8576 | 13400 | 0.0007 | 0.996 |
0.0002 | 0.864 | 13500 | 0.0009 | 0.996 |
0.0 | 0.8704 | 13600 | 0.0004 | 0.997 |
0.0 | 0.8768 | 13700 | 0.0072 | 0.971 |
0.0012 | 0.8832 | 13800 | 0.0011 | 0.995 |
0.0 | 0.8896 | 13900 | 0.0059 | 0.986 |
0.0 | 0.896 | 14000 | 0.0091 | 0.981 |
0.0 | 0.9024 | 14100 | 0.0081 | 0.984 |
0.0 | 0.9088 | 14200 | 0.0023 | 0.991 |
0.0 | 0.9152 | 14300 | 0.0031 | 0.991 |
0.0 | 0.9216 | 14400 | 0.0001 | 0.999 |
0.0 | 0.928 | 14500 | 0.0001 | 1.0 |
0.0 | 0.9344 | 14600 | 0.0001 | 1.0 |
0.0 | 0.9408 | 14700 | 0.0001 | 1.0 |
0.0 | 0.9472 | 14800 | 0.0000 | 1.0 |
0.0 | 0.9536 | 14900 | 0.0001 | 1.0 |
0.0 | 0.96 | 15000 | 0.0000 | 1.0 |
0.0001 | 0.9664 | 15100 | 0.0000 | 1.0 |
0.0 | 0.9728 | 15200 | 0.0000 | 1.0 |
0.0 | 0.9792 | 15300 | 0.0000 | 1.0 |
0.0 | 0.9856 | 15400 | 0.0000 | 1.0 |
0.0 | 0.992 | 15500 | 0.0000 | 1.0 |
0.0 | 0.9984 | 15600 | 0.0000 | 1.0 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support