reverse_add_replicate_eval17_SGD
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.2622
- Accuracy: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.SGD and the args are: No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0 | 0 | 2.7691 | 0.0 |
5.4494 | 0.0064 | 100 | 2.7152 | 0.0 |
5.1839 | 0.0128 | 200 | 2.5964 | 0.0 |
5.0056 | 0.0192 | 300 | 2.4931 | 0.0 |
4.885 | 0.0256 | 400 | 2.4403 | 0.0 |
4.8339 | 0.032 | 500 | 2.4154 | 0.0 |
4.7944 | 0.0384 | 600 | 2.4005 | 0.0 |
4.7774 | 0.0448 | 700 | 2.3900 | 0.0 |
4.7665 | 0.0512 | 800 | 2.3820 | 0.0 |
4.7421 | 0.0576 | 900 | 2.3750 | 0.0 |
4.7048 | 0.064 | 1000 | 2.3691 | 0.0 |
4.697 | 0.0704 | 1100 | 2.3660 | 0.0 |
4.6785 | 0.0768 | 1200 | 2.3630 | 0.0 |
4.6977 | 0.0832 | 1300 | 2.3622 | 0.0 |
4.6974 | 0.0896 | 1400 | 2.3597 | 0.0 |
4.6926 | 0.096 | 1500 | 2.3576 | 0.0 |
4.6554 | 0.1024 | 1600 | 2.3567 | 0.0 |
4.6593 | 0.1088 | 1700 | 2.3558 | 0.0 |
4.6801 | 0.1152 | 1800 | 2.3531 | 0.0 |
4.6731 | 0.1216 | 1900 | 2.3548 | 0.0 |
4.6353 | 0.128 | 2000 | 2.3534 | 0.0 |
4.6868 | 0.1344 | 2100 | 2.3495 | 0.0 |
4.6249 | 0.1408 | 2200 | 2.3482 | 0.0 |
4.6446 | 0.1472 | 2300 | 2.3489 | 0.0 |
4.6306 | 0.1536 | 2400 | 2.3479 | 0.0 |
4.6054 | 0.16 | 2500 | 2.3452 | 0.0 |
4.624 | 0.1664 | 2600 | 2.3504 | 0.0 |
4.5921 | 0.1728 | 2700 | 2.3329 | 0.0 |
4.6153 | 0.1792 | 2800 | 2.3307 | 0.0 |
4.6157 | 0.1856 | 2900 | 2.3416 | 0.0 |
4.5645 | 0.192 | 3000 | 2.3227 | 0.0 |
4.6075 | 0.1984 | 3100 | 2.3395 | 0.0 |
4.5375 | 0.2048 | 3200 | 2.3418 | 0.0 |
4.6178 | 0.2112 | 3300 | 2.3424 | 0.0 |
4.5216 | 0.2176 | 3400 | 2.3416 | 0.0 |
4.5746 | 0.224 | 3500 | 2.3381 | 0.0 |
4.5336 | 0.2304 | 3600 | 2.3375 | 0.0 |
4.547 | 0.2368 | 3700 | 2.3349 | 0.0 |
4.5464 | 0.2432 | 3800 | 2.3349 | 0.0 |
4.4977 | 0.2496 | 3900 | 2.3332 | 0.0 |
4.5392 | 0.256 | 4000 | 2.3337 | 0.0 |
4.513 | 0.2624 | 4100 | 2.3350 | 0.0 |
4.4875 | 0.2688 | 4200 | 2.3290 | 0.0 |
4.4972 | 0.2752 | 4300 | 2.3291 | 0.0 |
4.5155 | 0.2816 | 4400 | 2.3300 | 0.0 |
4.5351 | 0.288 | 4500 | 2.3318 | 0.0 |
4.4892 | 0.2944 | 4600 | 2.3293 | 0.0 |
4.4802 | 0.3008 | 4700 | 2.3254 | 0.0 |
4.4733 | 0.3072 | 4800 | 2.3244 | 0.0 |
4.4911 | 0.3136 | 4900 | 2.3251 | 0.0 |
4.5407 | 0.32 | 5000 | 2.3279 | 0.0 |
4.4904 | 0.3264 | 5100 | 2.3242 | 0.0 |
4.493 | 0.3328 | 5200 | 2.3250 | 0.0 |
4.5019 | 0.3392 | 5300 | 2.3224 | 0.0 |
4.4823 | 0.3456 | 5400 | 2.3221 | 0.0 |
4.499 | 0.352 | 5500 | 2.3204 | 0.0 |
4.4843 | 0.3584 | 5600 | 2.3230 | 0.0 |
4.4303 | 0.3648 | 5700 | 2.3177 | 0.0 |
4.4543 | 0.3712 | 5800 | 2.3194 | 0.0 |
4.4788 | 0.3776 | 5900 | 2.3177 | 0.0 |
4.4596 | 0.384 | 6000 | 2.3210 | 0.0 |
4.473 | 0.3904 | 6100 | 2.3178 | 0.0 |
4.4878 | 0.3968 | 6200 | 2.3177 | 0.0 |
4.4657 | 0.4032 | 6300 | 2.3176 | 0.0 |
4.4337 | 0.4096 | 6400 | 2.3166 | 0.0 |
4.4561 | 0.416 | 6500 | 2.3163 | 0.0 |
4.4499 | 0.4224 | 6600 | 2.3111 | 0.0 |
4.4576 | 0.4288 | 6700 | 2.3124 | 0.0 |
4.4695 | 0.4352 | 6800 | 2.3118 | 0.0 |
4.4362 | 0.4416 | 6900 | 2.3128 | 0.0 |
4.4915 | 0.448 | 7000 | 2.3129 | 0.0 |
4.4859 | 0.4544 | 7100 | 2.3117 | 0.0 |
4.4444 | 0.4608 | 7200 | 2.3122 | 0.0 |
4.4622 | 0.4672 | 7300 | 2.3102 | 0.0 |
4.4384 | 0.4736 | 7400 | 2.3078 | 0.0 |
4.4817 | 0.48 | 7500 | 2.3081 | 0.0 |
4.4351 | 0.4864 | 7600 | 2.3073 | 0.0 |
4.4692 | 0.4928 | 7700 | 2.3072 | 0.0 |
4.4338 | 0.4992 | 7800 | 2.3060 | 0.0 |
4.4533 | 0.5056 | 7900 | 2.3040 | 0.0 |
4.4304 | 0.512 | 8000 | 2.3022 | 0.0 |
4.43 | 0.5184 | 8100 | 2.3036 | 0.0 |
4.4574 | 0.5248 | 8200 | 2.3031 | 0.0 |
4.4424 | 0.5312 | 8300 | 2.2999 | 0.0 |
4.4323 | 0.5376 | 8400 | 2.2994 | 0.0 |
4.4287 | 0.544 | 8500 | 2.3007 | 0.0 |
4.4351 | 0.5504 | 8600 | 2.2986 | 0.0 |
4.4318 | 0.5568 | 8700 | 2.2973 | 0.0 |
4.4486 | 0.5632 | 8800 | 2.2950 | 0.0 |
4.4073 | 0.5696 | 8900 | 2.3010 | 0.0 |
4.4277 | 0.576 | 9000 | 2.2991 | 0.0 |
4.4582 | 0.5824 | 9100 | 2.2930 | 0.0 |
4.425 | 0.5888 | 9200 | 2.2926 | 0.0 |
4.4047 | 0.5952 | 9300 | 2.2939 | 0.0 |
4.4138 | 0.6016 | 9400 | 2.2911 | 0.0 |
4.4093 | 0.608 | 9500 | 2.2888 | 0.0 |
4.4299 | 0.6144 | 9600 | 2.2892 | 0.0 |
4.4503 | 0.6208 | 9700 | 2.2907 | 0.0 |
4.3764 | 0.6272 | 9800 | 2.2886 | 0.0 |
4.4089 | 0.6336 | 9900 | 2.2889 | 0.0 |
4.4211 | 0.64 | 10000 | 2.2566 | 0.0 |
4.4144 | 0.6464 | 10100 | 2.2567 | 0.0 |
4.4278 | 0.6528 | 10200 | 2.2562 | 0.0 |
4.4275 | 0.6592 | 10300 | 2.2589 | 0.0 |
4.4308 | 0.6656 | 10400 | 2.2559 | 0.0 |
4.4059 | 0.672 | 10500 | 2.2835 | 0.0 |
4.3932 | 0.6784 | 10600 | 2.2565 | 0.0 |
4.4075 | 0.6848 | 10700 | 2.2777 | 0.0 |
4.4198 | 0.6912 | 10800 | 2.2562 | 0.0 |
4.3904 | 0.6976 | 10900 | 2.2547 | 0.0 |
4.3908 | 0.704 | 11000 | 2.2581 | 0.0 |
4.3996 | 0.7104 | 11100 | 2.2774 | 0.0 |
4.4262 | 0.7168 | 11200 | 2.2544 | 0.0 |
4.394 | 0.7232 | 11300 | 2.2794 | 0.0 |
4.428 | 0.7296 | 11400 | 2.2585 | 0.0 |
4.3875 | 0.736 | 11500 | 2.2762 | 0.0 |
4.437 | 0.7424 | 11600 | 2.2712 | 0.0 |
4.3913 | 0.7488 | 11700 | 2.2695 | 0.0 |
4.4303 | 0.7552 | 11800 | 2.2669 | 0.0 |
4.4371 | 0.7616 | 11900 | 2.2770 | 0.0 |
4.378 | 0.768 | 12000 | 2.2546 | 0.0 |
4.4106 | 0.7744 | 12100 | 2.2574 | 0.0 |
4.4059 | 0.7808 | 12200 | 2.2535 | 0.0 |
4.3792 | 0.7872 | 12300 | 2.2561 | 0.0 |
4.3947 | 0.7936 | 12400 | 2.2754 | 0.0 |
4.3919 | 0.8 | 12500 | 2.2606 | 0.0 |
4.411 | 0.8064 | 12600 | 2.2588 | 0.0 |
4.3894 | 0.8128 | 12700 | 2.2556 | 0.0 |
4.3798 | 0.8192 | 12800 | 2.2741 | 0.0 |
4.4251 | 0.8256 | 12900 | 2.2606 | 0.0 |
4.4183 | 0.832 | 13000 | 2.2710 | 0.0 |
4.4031 | 0.8384 | 13100 | 2.2684 | 0.0 |
4.3694 | 0.8448 | 13200 | 2.2590 | 0.0 |
4.3984 | 0.8512 | 13300 | 2.2646 | 0.0 |
4.4177 | 0.8576 | 13400 | 2.2571 | 0.0 |
4.4154 | 0.864 | 13500 | 2.2649 | 0.0 |
4.4325 | 0.8704 | 13600 | 2.2569 | 0.0 |
4.3561 | 0.8768 | 13700 | 2.2592 | 0.0 |
4.3989 | 0.8832 | 13800 | 2.2589 | 0.0 |
4.4002 | 0.8896 | 13900 | 2.2639 | 0.0 |
4.3847 | 0.896 | 14000 | 2.2625 | 0.0 |
4.3902 | 0.9024 | 14100 | 2.2636 | 0.0 |
4.3979 | 0.9088 | 14200 | 2.2631 | 0.0 |
4.4114 | 0.9152 | 14300 | 2.2626 | 0.0 |
4.4233 | 0.9216 | 14400 | 2.2650 | 0.0 |
4.3873 | 0.928 | 14500 | 2.2593 | 0.0 |
4.4271 | 0.9344 | 14600 | 2.2635 | 0.0 |
4.4229 | 0.9408 | 14700 | 2.2598 | 0.0 |
4.3721 | 0.9472 | 14800 | 2.2585 | 0.0 |
4.3747 | 0.9536 | 14900 | 2.2606 | 0.0 |
4.3799 | 0.96 | 15000 | 2.2623 | 0.0 |
4.3857 | 0.9664 | 15100 | 2.2619 | 0.0 |
4.3924 | 0.9728 | 15200 | 2.2616 | 0.0 |
4.436 | 0.9792 | 15300 | 2.2619 | 0.0 |
4.3814 | 0.9856 | 15400 | 2.2623 | 0.0 |
4.3996 | 0.992 | 15500 | 2.2622 | 0.0 |
4.4039 | 0.9984 | 15600 | 2.2622 | 0.0 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support