reverse_add_replicate_eval17_dim10
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.3452
- Accuracy: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 7658372
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0 | 0 | 2.6422 | 0.0 |
2.619 | 0.0064 | 100 | 2.6198 | 0.0 |
2.5698 | 0.0128 | 200 | 2.5675 | 0.0 |
2.5195 | 0.0192 | 300 | 2.5157 | 0.0 |
2.4757 | 0.0256 | 400 | 2.4718 | 0.0 |
2.4438 | 0.032 | 500 | 2.4406 | 0.0 |
2.4228 | 0.0384 | 600 | 2.4197 | 0.0 |
2.4091 | 0.0448 | 700 | 2.4057 | 0.0 |
2.3981 | 0.0512 | 800 | 2.3965 | 0.0 |
2.3864 | 0.0576 | 900 | 2.3883 | 0.0 |
2.3814 | 0.064 | 1000 | 2.3842 | 0.0 |
2.3714 | 0.0704 | 1100 | 2.3639 | 0.0 |
2.3752 | 0.0768 | 1200 | 2.3580 | 0.0 |
2.3645 | 0.0832 | 1300 | 2.3582 | 0.0 |
2.3771 | 0.0896 | 1400 | 2.3547 | 0.0 |
2.373 | 0.096 | 1500 | 2.3540 | 0.0 |
2.365 | 0.1024 | 1600 | 2.3538 | 0.0 |
2.3688 | 0.1088 | 1700 | 2.3582 | 0.0 |
2.3679 | 0.1152 | 1800 | 2.3526 | 0.0 |
2.3687 | 0.1216 | 1900 | 2.3581 | 0.0 |
2.3622 | 0.128 | 2000 | 2.3551 | 0.0 |
2.3667 | 0.1344 | 2100 | 2.3532 | 0.0 |
2.3736 | 0.1408 | 2200 | 2.3518 | 0.0 |
2.3687 | 0.1472 | 2300 | 2.3516 | 0.0 |
2.3638 | 0.1536 | 2400 | 2.3522 | 0.0 |
2.3638 | 0.16 | 2500 | 2.3511 | 0.0 |
2.3726 | 0.1664 | 2600 | 2.3533 | 0.0 |
2.3676 | 0.1728 | 2700 | 2.3507 | 0.0 |
2.364 | 0.1792 | 2800 | 2.3500 | 0.0 |
2.3584 | 0.1856 | 2900 | 2.3530 | 0.0 |
2.3661 | 0.192 | 3000 | 2.3523 | 0.0 |
2.3687 | 0.1984 | 3100 | 2.3543 | 0.0 |
2.3711 | 0.2048 | 3200 | 2.3485 | 0.0 |
2.3669 | 0.2112 | 3300 | 2.3521 | 0.0 |
2.366 | 0.2176 | 3400 | 2.3530 | 0.0 |
2.3704 | 0.224 | 3500 | 2.3484 | 0.0 |
2.3635 | 0.2304 | 3600 | 2.3508 | 0.0 |
2.3571 | 0.2368 | 3700 | 2.3493 | 0.0 |
2.3583 | 0.2432 | 3800 | 2.3450 | 0.0 |
2.3621 | 0.2496 | 3900 | 2.3461 | 0.0 |
2.351 | 0.256 | 4000 | 2.3482 | 0.0 |
2.3653 | 0.2624 | 4100 | 2.3485 | 0.0 |
2.3621 | 0.2688 | 4200 | 2.3465 | 0.0 |
2.3632 | 0.2752 | 4300 | 2.3466 | 0.0 |
2.361 | 0.2816 | 4400 | 2.3478 | 0.0 |
2.3648 | 0.288 | 4500 | 2.3490 | 0.0 |
2.3577 | 0.2944 | 4600 | 2.3457 | 0.0 |
2.3566 | 0.3008 | 4700 | 2.3467 | 0.0 |
2.3648 | 0.3072 | 4800 | 2.3468 | 0.0 |
2.3593 | 0.3136 | 4900 | 2.3486 | 0.0 |
2.3677 | 0.32 | 5000 | 2.3458 | 0.0 |
2.361 | 0.3264 | 5100 | 2.3445 | 0.0 |
2.3596 | 0.3328 | 5200 | 2.3470 | 0.0 |
2.36 | 0.3392 | 5300 | 2.3477 | 0.0 |
2.362 | 0.3456 | 5400 | 2.3478 | 0.0 |
2.365 | 0.352 | 5500 | 2.3482 | 0.0 |
2.3679 | 0.3584 | 5600 | 2.3462 | 0.0 |
2.3648 | 0.3648 | 5700 | 2.3512 | 0.0 |
2.3625 | 0.3712 | 5800 | 2.3453 | 0.0 |
2.363 | 0.3776 | 5900 | 2.3476 | 0.0 |
2.362 | 0.384 | 6000 | 2.3447 | 0.0 |
2.3622 | 0.3904 | 6100 | 2.3468 | 0.0 |
2.3575 | 0.3968 | 6200 | 2.3438 | 0.0 |
2.3681 | 0.4032 | 6300 | 2.3447 | 0.0 |
2.3585 | 0.4096 | 6400 | 2.3474 | 0.0 |
2.3616 | 0.416 | 6500 | 2.3474 | 0.0 |
2.3614 | 0.4224 | 6600 | 2.3460 | 0.0 |
2.3621 | 0.4288 | 6700 | 2.3470 | 0.0 |
2.362 | 0.4352 | 6800 | 2.3461 | 0.0 |
2.3597 | 0.4416 | 6900 | 2.3465 | 0.0 |
2.3643 | 0.448 | 7000 | 2.3455 | 0.0 |
2.3604 | 0.4544 | 7100 | 2.3444 | 0.0 |
2.3573 | 0.4608 | 7200 | 2.3458 | 0.0 |
2.3636 | 0.4672 | 7300 | 2.3467 | 0.0 |
2.3651 | 0.4736 | 7400 | 2.3465 | 0.0 |
2.3596 | 0.48 | 7500 | 2.3440 | 0.0 |
2.3582 | 0.4864 | 7600 | 2.3454 | 0.0 |
2.3593 | 0.4928 | 7700 | 2.3465 | 0.0 |
2.368 | 0.4992 | 7800 | 2.3470 | 0.0 |
2.364 | 0.5056 | 7900 | 2.3448 | 0.0 |
2.3657 | 0.512 | 8000 | 2.3493 | 0.0 |
2.3622 | 0.5184 | 8100 | 2.3470 | 0.0 |
2.3578 | 0.5248 | 8200 | 2.3466 | 0.0 |
2.3535 | 0.5312 | 8300 | 2.3474 | 0.0 |
2.3601 | 0.5376 | 8400 | 2.3452 | 0.0 |
2.356 | 0.544 | 8500 | 2.3446 | 0.0 |
2.3697 | 0.5504 | 8600 | 2.3471 | 0.0 |
2.3686 | 0.5568 | 8700 | 2.3482 | 0.0 |
2.3579 | 0.5632 | 8800 | 2.3466 | 0.0 |
2.3599 | 0.5696 | 8900 | 2.3476 | 0.0 |
2.3556 | 0.576 | 9000 | 2.3448 | 0.0 |
2.347 | 0.5824 | 9100 | 2.3473 | 0.0 |
2.3547 | 0.5888 | 9200 | 2.3463 | 0.0 |
2.3582 | 0.5952 | 9300 | 2.3457 | 0.0 |
2.3535 | 0.6016 | 9400 | 2.3451 | 0.0 |
2.3515 | 0.608 | 9500 | 2.3457 | 0.0 |
2.3613 | 0.6144 | 9600 | 2.3445 | 0.0 |
2.3577 | 0.6208 | 9700 | 2.3454 | 0.0 |
2.3601 | 0.6272 | 9800 | 2.3464 | 0.0 |
2.3625 | 0.6336 | 9900 | 2.3448 | 0.0 |
2.3496 | 0.64 | 10000 | 2.3457 | 0.0 |
2.3648 | 0.6464 | 10100 | 2.3470 | 0.0 |
2.3554 | 0.6528 | 10200 | 2.3470 | 0.0 |
2.361 | 0.6592 | 10300 | 2.3458 | 0.0 |
2.3631 | 0.6656 | 10400 | 2.3461 | 0.0 |
2.3516 | 0.672 | 10500 | 2.3453 | 0.0 |
2.3596 | 0.6784 | 10600 | 2.3447 | 0.0 |
2.3445 | 0.6848 | 10700 | 2.3479 | 0.0 |
2.3551 | 0.6912 | 10800 | 2.3447 | 0.0 |
2.3571 | 0.6976 | 10900 | 2.3465 | 0.0 |
2.3593 | 0.704 | 11000 | 2.3458 | 0.0 |
2.3573 | 0.7104 | 11100 | 2.3459 | 0.0 |
2.3606 | 0.7168 | 11200 | 2.3458 | 0.0 |
2.3616 | 0.7232 | 11300 | 2.3466 | 0.0 |
2.3645 | 0.7296 | 11400 | 2.3468 | 0.0 |
2.3581 | 0.736 | 11500 | 2.3469 | 0.0 |
2.3515 | 0.7424 | 11600 | 2.3457 | 0.0 |
2.359 | 0.7488 | 11700 | 2.3458 | 0.0 |
2.3513 | 0.7552 | 11800 | 2.3456 | 0.0 |
2.3634 | 0.7616 | 11900 | 2.3457 | 0.0 |
2.3634 | 0.768 | 12000 | 2.3468 | 0.0 |
2.363 | 0.7744 | 12100 | 2.3454 | 0.0 |
2.3526 | 0.7808 | 12200 | 2.3469 | 0.0 |
2.3573 | 0.7872 | 12300 | 2.3456 | 0.0 |
2.3625 | 0.7936 | 12400 | 2.3457 | 0.0 |
2.3674 | 0.8 | 12500 | 2.3464 | 0.0 |
2.3578 | 0.8064 | 12600 | 2.3463 | 0.0 |
2.3544 | 0.8128 | 12700 | 2.3458 | 0.0 |
2.3661 | 0.8192 | 12800 | 2.3446 | 0.0 |
2.3598 | 0.8256 | 12900 | 2.3460 | 0.0 |
2.3587 | 0.832 | 13000 | 2.3455 | 0.0 |
2.3626 | 0.8384 | 13100 | 2.3455 | 0.0 |
2.3608 | 0.8448 | 13200 | 2.3461 | 0.0 |
2.3523 | 0.8512 | 13300 | 2.3453 | 0.0 |
2.3696 | 0.8576 | 13400 | 2.3455 | 0.0 |
2.3567 | 0.864 | 13500 | 2.3456 | 0.0 |
2.3512 | 0.8704 | 13600 | 2.3452 | 0.0 |
2.3664 | 0.8768 | 13700 | 2.3456 | 0.0 |
2.3558 | 0.8832 | 13800 | 2.3450 | 0.0 |
2.3574 | 0.8896 | 13900 | 2.3461 | 0.0 |
2.3507 | 0.896 | 14000 | 2.3442 | 0.0 |
2.3618 | 0.9024 | 14100 | 2.3453 | 0.0 |
2.3558 | 0.9088 | 14200 | 2.3450 | 0.0 |
2.3518 | 0.9152 | 14300 | 2.3455 | 0.0 |
2.3582 | 0.9216 | 14400 | 2.3454 | 0.0 |
2.3603 | 0.928 | 14500 | 2.3455 | 0.0 |
2.3546 | 0.9344 | 14600 | 2.3451 | 0.0 |
2.363 | 0.9408 | 14700 | 2.3455 | 0.0 |
2.3607 | 0.9472 | 14800 | 2.3454 | 0.0 |
2.363 | 0.9536 | 14900 | 2.3454 | 0.0 |
2.3601 | 0.96 | 15000 | 2.3453 | 0.0 |
2.3499 | 0.9664 | 15100 | 2.3453 | 0.0 |
2.35 | 0.9728 | 15200 | 2.3452 | 0.0 |
2.3563 | 0.9792 | 15300 | 2.3452 | 0.0 |
2.3497 | 0.9856 | 15400 | 2.3453 | 0.0 |
2.3568 | 0.992 | 15500 | 2.3452 | 0.0 |
2.3609 | 0.9984 | 15600 | 2.3452 | 0.0 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support