reverse_add_replicate_eval17_small_1layer
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.5994
- Accuracy: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 7658372
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0 | 0 | 2.6405 | 0.0 |
2.6234 | 0.0064 | 100 | 2.6259 | 0.0 |
2.577 | 0.0128 | 200 | 2.5785 | 0.0 |
2.5307 | 0.0192 | 300 | 2.5300 | 0.0 |
2.4899 | 0.0256 | 400 | 2.4878 | 0.0 |
2.4573 | 0.032 | 500 | 2.4559 | 0.0 |
2.4345 | 0.0384 | 600 | 2.4337 | 0.0 |
2.4184 | 0.0448 | 700 | 2.4186 | 0.0 |
2.4046 | 0.0512 | 800 | 2.4096 | 0.0 |
2.3941 | 0.0576 | 900 | 2.3994 | 0.0 |
2.3886 | 0.064 | 1000 | 2.3996 | 0.0 |
2.3771 | 0.0704 | 1100 | 2.4505 | 0.0 |
2.37 | 0.0768 | 1200 | 2.4449 | 0.0 |
2.3755 | 0.0832 | 1300 | 2.4213 | 0.0 |
2.3742 | 0.0896 | 1400 | 2.5070 | 0.0 |
2.3745 | 0.096 | 1500 | 2.4311 | 0.0 |
2.3674 | 0.1024 | 1600 | 2.4830 | 0.0 |
2.3656 | 0.1088 | 1700 | 2.4634 | 0.0 |
2.3616 | 0.1152 | 1800 | 2.4772 | 0.0 |
2.3681 | 0.1216 | 1900 | 2.4977 | 0.0 |
2.3728 | 0.128 | 2000 | 2.6562 | 0.0 |
2.3677 | 0.1344 | 2100 | 2.4819 | 0.0 |
2.3676 | 0.1408 | 2200 | 2.4610 | 0.0 |
2.3634 | 0.1472 | 2300 | 2.5009 | 0.0 |
2.3705 | 0.1536 | 2400 | 2.4709 | 0.0 |
2.3663 | 0.16 | 2500 | 2.4841 | 0.0 |
2.3676 | 0.1664 | 2600 | 2.5541 | 0.0 |
2.3573 | 0.1728 | 2700 | 2.4714 | 0.0 |
2.3642 | 0.1792 | 2800 | 2.4749 | 0.0 |
2.3626 | 0.1856 | 2900 | 2.5095 | 0.0 |
2.365 | 0.192 | 3000 | 2.5000 | 0.0 |
2.3592 | 0.1984 | 3100 | 2.5363 | 0.0 |
2.3649 | 0.2048 | 3200 | 2.4799 | 0.0 |
2.3576 | 0.2112 | 3300 | 2.4855 | 0.0 |
2.3679 | 0.2176 | 3400 | 2.5114 | 0.0 |
2.3647 | 0.224 | 3500 | 2.5487 | 0.0 |
2.371 | 0.2304 | 3600 | 2.4369 | 0.0 |
2.354 | 0.2368 | 3700 | 2.5066 | 0.0 |
2.3581 | 0.2432 | 3800 | 2.4871 | 0.0 |
2.364 | 0.2496 | 3900 | 2.5979 | 0.0 |
2.3597 | 0.256 | 4000 | 2.5254 | 0.0 |
2.3675 | 0.2624 | 4100 | 2.5234 | 0.0 |
2.3613 | 0.2688 | 4200 | 2.4946 | 0.0 |
2.3629 | 0.2752 | 4300 | 2.4694 | 0.0 |
2.3609 | 0.2816 | 4400 | 2.4860 | 0.0 |
2.355 | 0.288 | 4500 | 2.5495 | 0.0 |
2.3633 | 0.2944 | 4600 | 2.5450 | 0.0 |
2.3577 | 0.3008 | 4700 | 2.5079 | 0.0 |
2.3628 | 0.3072 | 4800 | 2.5156 | 0.0 |
2.3549 | 0.3136 | 4900 | 2.4778 | 0.0 |
2.3621 | 0.32 | 5000 | 2.5554 | 0.0 |
2.3563 | 0.3264 | 5100 | 2.5000 | 0.0 |
2.3624 | 0.3328 | 5200 | 2.5690 | 0.0 |
2.3563 | 0.3392 | 5300 | 2.4614 | 0.0 |
2.3553 | 0.3456 | 5400 | 2.4333 | 0.0 |
2.3573 | 0.352 | 5500 | 2.4946 | 0.0 |
2.3586 | 0.3584 | 5600 | 2.5507 | 0.0 |
2.3608 | 0.3648 | 5700 | 2.5246 | 0.0 |
2.3626 | 0.3712 | 5800 | 2.4721 | 0.0 |
2.3635 | 0.3776 | 5900 | 2.5269 | 0.0 |
2.3555 | 0.384 | 6000 | 2.4758 | 0.0 |
2.3607 | 0.3904 | 6100 | 2.5192 | 0.0 |
2.3559 | 0.3968 | 6200 | 2.5747 | 0.0 |
2.3664 | 0.4032 | 6300 | 2.4620 | 0.0 |
2.3604 | 0.4096 | 6400 | 2.5626 | 0.0 |
2.3647 | 0.416 | 6500 | 2.5473 | 0.0 |
2.3624 | 0.4224 | 6600 | 2.5852 | 0.0 |
2.3574 | 0.4288 | 6700 | 2.6200 | 0.0 |
2.36 | 0.4352 | 6800 | 2.5269 | 0.0 |
2.3557 | 0.4416 | 6900 | 2.5453 | 0.0 |
2.3603 | 0.448 | 7000 | 2.5212 | 0.0 |
2.3569 | 0.4544 | 7100 | 2.6011 | 0.0 |
2.3544 | 0.4608 | 7200 | 2.5631 | 0.0 |
2.3613 | 0.4672 | 7300 | 2.5656 | 0.0 |
2.3565 | 0.4736 | 7400 | 2.5427 | 0.0 |
2.3551 | 0.48 | 7500 | 2.4880 | 0.0 |
2.3585 | 0.4864 | 7600 | 2.5707 | 0.0 |
2.3576 | 0.4928 | 7700 | 2.5616 | 0.0 |
2.3632 | 0.4992 | 7800 | 2.5697 | 0.0 |
2.3579 | 0.5056 | 7900 | 2.5803 | 0.0 |
2.3593 | 0.512 | 8000 | 2.6355 | 0.0 |
2.3604 | 0.5184 | 8100 | 2.5355 | 0.0 |
2.3594 | 0.5248 | 8200 | 2.5198 | 0.0 |
2.357 | 0.5312 | 8300 | 2.5762 | 0.0 |
2.3487 | 0.5376 | 8400 | 2.5462 | 0.0 |
2.3652 | 0.544 | 8500 | 2.5878 | 0.0 |
2.3549 | 0.5504 | 8600 | 2.5376 | 0.0 |
2.3516 | 0.5568 | 8700 | 2.5517 | 0.0 |
2.358 | 0.5632 | 8800 | 2.5280 | 0.0 |
2.3587 | 0.5696 | 8900 | 2.5489 | 0.0 |
2.3646 | 0.576 | 9000 | 2.6044 | 0.0 |
2.3549 | 0.5824 | 9100 | 2.5392 | 0.0 |
2.3579 | 0.5888 | 9200 | 2.6203 | 0.0 |
2.3654 | 0.5952 | 9300 | 2.5952 | 0.0 |
2.3657 | 0.6016 | 9400 | 2.5479 | 0.0 |
2.3571 | 0.608 | 9500 | 2.5350 | 0.0 |
2.3515 | 0.6144 | 9600 | 2.6317 | 0.0 |
2.3565 | 0.6208 | 9700 | 2.5772 | 0.0 |
2.3534 | 0.6272 | 9800 | 2.6011 | 0.0 |
2.3574 | 0.6336 | 9900 | 2.4998 | 0.0 |
2.3553 | 0.64 | 10000 | 2.5933 | 0.0 |
2.3443 | 0.6464 | 10100 | 2.5925 | 0.0 |
2.3581 | 0.6528 | 10200 | 2.6502 | 0.0 |
2.3488 | 0.6592 | 10300 | 2.6558 | 0.0 |
2.3659 | 0.6656 | 10400 | 2.6271 | 0.0 |
2.353 | 0.672 | 10500 | 2.5513 | 0.0 |
2.3497 | 0.6784 | 10600 | 2.6017 | 0.0 |
2.3573 | 0.6848 | 10700 | 2.5998 | 0.0 |
2.3642 | 0.6912 | 10800 | 2.5925 | 0.0 |
2.3522 | 0.6976 | 10900 | 2.4902 | 0.0 |
2.3543 | 0.704 | 11000 | 2.5761 | 0.0 |
2.3538 | 0.7104 | 11100 | 2.5737 | 0.0 |
2.3545 | 0.7168 | 11200 | 2.5827 | 0.0 |
2.3586 | 0.7232 | 11300 | 2.6190 | 0.0 |
2.3575 | 0.7296 | 11400 | 2.5708 | 0.0 |
2.3573 | 0.736 | 11500 | 2.5409 | 0.0 |
2.3575 | 0.7424 | 11600 | 2.5762 | 0.0 |
2.3576 | 0.7488 | 11700 | 2.6299 | 0.0 |
2.3487 | 0.7552 | 11800 | 2.5414 | 0.0 |
2.3623 | 0.7616 | 11900 | 2.5767 | 0.0 |
2.3599 | 0.768 | 12000 | 2.5446 | 0.0 |
2.3506 | 0.7744 | 12100 | 2.5832 | 0.0 |
2.3546 | 0.7808 | 12200 | 2.5563 | 0.0 |
2.3543 | 0.7872 | 12300 | 2.5601 | 0.0 |
2.3507 | 0.7936 | 12400 | 2.5719 | 0.0 |
2.3524 | 0.8 | 12500 | 2.5835 | 0.0 |
2.3447 | 0.8064 | 12600 | 2.5615 | 0.0 |
2.3573 | 0.8128 | 12700 | 2.6363 | 0.0 |
2.356 | 0.8192 | 12800 | 2.6349 | 0.0 |
2.3544 | 0.8256 | 12900 | 2.5914 | 0.0 |
2.3638 | 0.832 | 13000 | 2.5714 | 0.0 |
2.3591 | 0.8384 | 13100 | 2.6121 | 0.0 |
2.3565 | 0.8448 | 13200 | 2.5863 | 0.0 |
2.3481 | 0.8512 | 13300 | 2.6126 | 0.0 |
2.358 | 0.8576 | 13400 | 2.5951 | 0.0 |
2.3518 | 0.864 | 13500 | 2.6111 | 0.0 |
2.3445 | 0.8704 | 13600 | 2.6072 | 0.0 |
2.3466 | 0.8768 | 13700 | 2.6104 | 0.0 |
2.3613 | 0.8832 | 13800 | 2.5829 | 0.0 |
2.3506 | 0.8896 | 13900 | 2.6030 | 0.0 |
2.3478 | 0.896 | 14000 | 2.5717 | 0.0 |
2.3618 | 0.9024 | 14100 | 2.6115 | 0.0 |
2.3628 | 0.9088 | 14200 | 2.5984 | 0.0 |
2.3504 | 0.9152 | 14300 | 2.6091 | 0.0 |
2.3596 | 0.9216 | 14400 | 2.6084 | 0.0 |
2.3556 | 0.928 | 14500 | 2.5812 | 0.0 |
2.3624 | 0.9344 | 14600 | 2.6058 | 0.0 |
2.3564 | 0.9408 | 14700 | 2.5861 | 0.0 |
2.3649 | 0.9472 | 14800 | 2.5941 | 0.0 |
2.3522 | 0.9536 | 14900 | 2.5955 | 0.0 |
2.3436 | 0.96 | 15000 | 2.5882 | 0.0 |
2.3552 | 0.9664 | 15100 | 2.6067 | 0.0 |
2.3537 | 0.9728 | 15200 | 2.5985 | 0.0 |
2.36 | 0.9792 | 15300 | 2.5967 | 0.0 |
2.3605 | 0.9856 | 15400 | 2.5998 | 0.0 |
2.3544 | 0.992 | 15500 | 2.5996 | 0.0 |
2.3535 | 0.9984 | 15600 | 2.5994 | 0.0 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support