reverse_add_replicate_eval17_small_1layer_d1_20
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.3920
- Accuracy: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 7658372
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0 | 0 | 2.6391 | 0.0 |
2.639 | 0.0064 | 100 | 2.6390 | 0.0 |
2.6388 | 0.0128 | 200 | 2.6388 | 0.0 |
2.6378 | 0.0192 | 300 | 2.6377 | 0.0 |
2.6349 | 0.0256 | 400 | 2.6348 | 0.0 |
2.629 | 0.032 | 500 | 2.6288 | 0.0 |
2.6186 | 0.0384 | 600 | 2.6185 | 0.0 |
2.6034 | 0.0448 | 700 | 2.6031 | 0.0 |
2.5832 | 0.0512 | 800 | 2.5827 | 0.0 |
2.5591 | 0.0576 | 900 | 2.5584 | 0.0 |
2.5331 | 0.064 | 1000 | 2.5322 | 0.0 |
2.5077 | 0.0704 | 1100 | 2.5060 | 0.0 |
2.4844 | 0.0768 | 1200 | 2.4826 | 0.0 |
2.4659 | 0.0832 | 1300 | 2.4624 | 0.0 |
2.4499 | 0.0896 | 1400 | 2.4467 | 0.0 |
2.4375 | 0.096 | 1500 | 2.4344 | 0.0 |
2.4289 | 0.1024 | 1600 | 2.4251 | 0.0 |
2.4221 | 0.1088 | 1700 | 2.4182 | 0.0 |
2.4179 | 0.1152 | 1800 | 2.4132 | 0.0 |
2.4144 | 0.1216 | 1900 | 2.4096 | 0.0 |
2.4121 | 0.128 | 2000 | 2.4072 | 0.0 |
2.409 | 0.1344 | 2100 | 2.4044 | 0.0 |
2.4078 | 0.1408 | 2200 | 2.4028 | 0.0 |
2.4069 | 0.1472 | 2300 | 2.4016 | 0.0 |
2.4045 | 0.1536 | 2400 | 2.4001 | 0.0 |
2.4029 | 0.16 | 2500 | 2.3990 | 0.0 |
2.403 | 0.1664 | 2600 | 2.3980 | 0.0 |
2.4025 | 0.1728 | 2700 | 2.3977 | 0.0 |
2.4006 | 0.1792 | 2800 | 2.3977 | 0.0 |
2.4014 | 0.1856 | 2900 | 2.3972 | 0.0 |
2.4027 | 0.192 | 3000 | 2.3959 | 0.0 |
2.4 | 0.1984 | 3100 | 2.3954 | 0.0 |
2.4005 | 0.2048 | 3200 | 2.3951 | 0.0 |
2.3995 | 0.2112 | 3300 | 2.3950 | 0.0 |
2.3999 | 0.2176 | 3400 | 2.3949 | 0.0 |
2.3996 | 0.224 | 3500 | 2.3943 | 0.0 |
2.3995 | 0.2304 | 3600 | 2.3944 | 0.0 |
2.3983 | 0.2368 | 3700 | 2.3940 | 0.0 |
2.4001 | 0.2432 | 3800 | 2.3944 | 0.0 |
2.3983 | 0.2496 | 3900 | 2.3937 | 0.0 |
2.3999 | 0.256 | 4000 | 2.3937 | 0.0 |
2.3972 | 0.2624 | 4100 | 2.3936 | 0.0 |
2.3984 | 0.2688 | 4200 | 2.3936 | 0.0 |
2.3999 | 0.2752 | 4300 | 2.3934 | 0.0 |
2.3973 | 0.2816 | 4400 | 2.3930 | 0.0 |
2.3996 | 0.288 | 4500 | 2.3933 | 0.0 |
2.3993 | 0.2944 | 4600 | 2.3932 | 0.0 |
2.3974 | 0.3008 | 4700 | 2.3932 | 0.0 |
2.3981 | 0.3072 | 4800 | 2.3929 | 0.0 |
2.3974 | 0.3136 | 4900 | 2.3935 | 0.0 |
2.3973 | 0.32 | 5000 | 2.3929 | 0.0 |
2.3967 | 0.3264 | 5100 | 2.3926 | 0.0 |
2.3984 | 0.3328 | 5200 | 2.3924 | 0.0 |
2.3979 | 0.3392 | 5300 | 2.3924 | 0.0 |
2.3981 | 0.3456 | 5400 | 2.3928 | 0.0 |
2.3971 | 0.352 | 5500 | 2.3922 | 0.0 |
2.3973 | 0.3584 | 5600 | 2.3924 | 0.0 |
2.3983 | 0.3648 | 5700 | 2.3928 | 0.0 |
2.3973 | 0.3712 | 5800 | 2.3925 | 0.0 |
2.3985 | 0.3776 | 5900 | 2.3923 | 0.0 |
2.3964 | 0.384 | 6000 | 2.3926 | 0.0 |
2.3972 | 0.3904 | 6100 | 2.3924 | 0.0 |
2.3964 | 0.3968 | 6200 | 2.3923 | 0.0 |
2.3972 | 0.4032 | 6300 | 2.3923 | 0.0 |
2.3979 | 0.4096 | 6400 | 2.3921 | 0.0 |
2.3978 | 0.416 | 6500 | 2.3920 | 0.0 |
2.3963 | 0.4224 | 6600 | 2.3922 | 0.0 |
2.3977 | 0.4288 | 6700 | 2.3920 | 0.0 |
2.3967 | 0.4352 | 6800 | 2.3924 | 0.0 |
2.3965 | 0.4416 | 6900 | 2.3921 | 0.0 |
2.398 | 0.448 | 7000 | 2.3919 | 0.0 |
2.3971 | 0.4544 | 7100 | 2.3922 | 0.0 |
2.3975 | 0.4608 | 7200 | 2.3920 | 0.0 |
2.3975 | 0.4672 | 7300 | 2.3925 | 0.0 |
2.3978 | 0.4736 | 7400 | 2.3931 | 0.0 |
2.3981 | 0.48 | 7500 | 2.3925 | 0.0 |
2.3966 | 0.4864 | 7600 | 2.3924 | 0.0 |
2.3971 | 0.4928 | 7700 | 2.3918 | 0.0 |
2.3976 | 0.4992 | 7800 | 2.3920 | 0.0 |
2.398 | 0.5056 | 7900 | 2.3919 | 0.0 |
2.3965 | 0.512 | 8000 | 2.3921 | 0.0 |
2.3958 | 0.5184 | 8100 | 2.3926 | 0.0 |
2.3977 | 0.5248 | 8200 | 2.3923 | 0.0 |
2.3967 | 0.5312 | 8300 | 2.3922 | 0.0 |
2.398 | 0.5376 | 8400 | 2.3921 | 0.0 |
2.3968 | 0.544 | 8500 | 2.3921 | 0.0 |
2.398 | 0.5504 | 8600 | 2.3922 | 0.0 |
2.3978 | 0.5568 | 8700 | 2.3918 | 0.0 |
2.3969 | 0.5632 | 8800 | 2.3922 | 0.0 |
2.3979 | 0.5696 | 8900 | 2.3920 | 0.0 |
2.3984 | 0.576 | 9000 | 2.3922 | 0.0 |
2.3981 | 0.5824 | 9100 | 2.3922 | 0.0 |
2.3961 | 0.5888 | 9200 | 2.3921 | 0.0 |
2.3977 | 0.5952 | 9300 | 2.3919 | 0.0 |
2.397 | 0.6016 | 9400 | 2.3918 | 0.0 |
2.3981 | 0.608 | 9500 | 2.3919 | 0.0 |
2.3977 | 0.6144 | 9600 | 2.3919 | 0.0 |
2.3956 | 0.6208 | 9700 | 2.3923 | 0.0 |
2.3965 | 0.6272 | 9800 | 2.3922 | 0.0 |
2.3973 | 0.6336 | 9900 | 2.3923 | 0.0 |
2.3959 | 0.64 | 10000 | 2.3922 | 0.0 |
2.3981 | 0.6464 | 10100 | 2.3922 | 0.0 |
2.3972 | 0.6528 | 10200 | 2.3919 | 0.0 |
2.3966 | 0.6592 | 10300 | 2.3920 | 0.0 |
2.3962 | 0.6656 | 10400 | 2.3918 | 0.0 |
2.3962 | 0.672 | 10500 | 2.3920 | 0.0 |
2.3962 | 0.6784 | 10600 | 2.3917 | 0.0 |
2.3968 | 0.6848 | 10700 | 2.3919 | 0.0 |
2.3969 | 0.6912 | 10800 | 2.3922 | 0.0 |
2.3962 | 0.6976 | 10900 | 2.3917 | 0.0 |
2.3974 | 0.704 | 11000 | 2.3923 | 0.0 |
2.3971 | 0.7104 | 11100 | 2.3920 | 0.0 |
2.3978 | 0.7168 | 11200 | 2.3922 | 0.0 |
2.3976 | 0.7232 | 11300 | 2.3921 | 0.0 |
2.3963 | 0.7296 | 11400 | 2.3920 | 0.0 |
2.3977 | 0.736 | 11500 | 2.3918 | 0.0 |
2.398 | 0.7424 | 11600 | 2.3919 | 0.0 |
2.3966 | 0.7488 | 11700 | 2.3921 | 0.0 |
2.3954 | 0.7552 | 11800 | 2.3922 | 0.0 |
2.3964 | 0.7616 | 11900 | 2.3920 | 0.0 |
2.3977 | 0.768 | 12000 | 2.3922 | 0.0 |
2.3978 | 0.7744 | 12100 | 2.3920 | 0.0 |
2.397 | 0.7808 | 12200 | 2.3921 | 0.0 |
2.3959 | 0.7872 | 12300 | 2.3921 | 0.0 |
2.3976 | 0.7936 | 12400 | 2.3919 | 0.0 |
2.3967 | 0.8 | 12500 | 2.3917 | 0.0 |
2.3968 | 0.8064 | 12600 | 2.3920 | 0.0 |
2.3987 | 0.8128 | 12700 | 2.3921 | 0.0 |
2.3942 | 0.8192 | 12800 | 2.3919 | 0.0 |
2.3964 | 0.8256 | 12900 | 2.3919 | 0.0 |
2.3974 | 0.832 | 13000 | 2.3918 | 0.0 |
2.397 | 0.8384 | 13100 | 2.3919 | 0.0 |
2.3973 | 0.8448 | 13200 | 2.3918 | 0.0 |
2.3982 | 0.8512 | 13300 | 2.3918 | 0.0 |
2.396 | 0.8576 | 13400 | 2.3919 | 0.0 |
2.3977 | 0.864 | 13500 | 2.3920 | 0.0 |
2.3972 | 0.8704 | 13600 | 2.3920 | 0.0 |
2.3969 | 0.8768 | 13700 | 2.3919 | 0.0 |
2.3973 | 0.8832 | 13800 | 2.3919 | 0.0 |
2.3959 | 0.8896 | 13900 | 2.3919 | 0.0 |
2.3976 | 0.896 | 14000 | 2.3919 | 0.0 |
2.3963 | 0.9024 | 14100 | 2.3919 | 0.0 |
2.3976 | 0.9088 | 14200 | 2.3920 | 0.0 |
2.3977 | 0.9152 | 14300 | 2.3919 | 0.0 |
2.3972 | 0.9216 | 14400 | 2.3919 | 0.0 |
2.3962 | 0.928 | 14500 | 2.3919 | 0.0 |
2.3965 | 0.9344 | 14600 | 2.3920 | 0.0 |
2.3974 | 0.9408 | 14700 | 2.3920 | 0.0 |
2.3977 | 0.9472 | 14800 | 2.3920 | 0.0 |
2.3975 | 0.9536 | 14900 | 2.3920 | 0.0 |
2.3967 | 0.96 | 15000 | 2.3920 | 0.0 |
2.3966 | 0.9664 | 15100 | 2.3920 | 0.0 |
2.3983 | 0.9728 | 15200 | 2.3920 | 0.0 |
2.3977 | 0.9792 | 15300 | 2.3920 | 0.0 |
2.3972 | 0.9856 | 15400 | 2.3920 | 0.0 |
2.3976 | 0.992 | 15500 | 2.3920 | 0.0 |
2.3969 | 0.9984 | 15600 | 2.3920 | 0.0 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support