reverse_add_replicate_eval18
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0462
- Accuracy: 0.822
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0 | 0 | 2.6252 | 0.0 |
4.5838 | 0.0064 | 100 | 2.3366 | 0.0 |
4.431 | 0.0128 | 200 | 2.2655 | 0.0 |
4.337 | 0.0192 | 300 | 2.3128 | 0.0 |
4.2999 | 0.0256 | 400 | 2.1857 | 0.0 |
4.3044 | 0.032 | 500 | 2.2308 | 0.0 |
3.9499 | 0.0384 | 600 | 2.0985 | 0.0 |
3.778 | 0.0448 | 700 | 2.0666 | 0.0 |
3.3655 | 0.0512 | 800 | 1.7091 | 0.0 |
3.1301 | 0.0576 | 900 | 2.0713 | 0.0 |
3.3799 | 0.064 | 1000 | 1.7607 | 0.0 |
2.7031 | 0.0704 | 1100 | 1.4787 | 0.0 |
2.4529 | 0.0768 | 1200 | 1.4061 | 0.0 |
3.1457 | 0.0832 | 1300 | 1.5655 | 0.0 |
2.7466 | 0.0896 | 1400 | 1.5409 | 0.0 |
2.545 | 0.096 | 1500 | 1.6788 | 0.0 |
2.215 | 0.1024 | 1600 | 1.4968 | 0.0 |
2.4219 | 0.1088 | 1700 | 1.7860 | 0.0 |
2.3565 | 0.1152 | 1800 | 1.3797 | 0.0 |
2.5352 | 0.1216 | 1900 | 1.4154 | 0.0 |
2.4223 | 0.128 | 2000 | 1.3751 | 0.0 |
2.3618 | 0.1344 | 2100 | 1.2539 | 0.002 |
2.7171 | 0.1408 | 2200 | 1.4281 | 0.0 |
2.3209 | 0.1472 | 2300 | 1.2035 | 0.002 |
2.6747 | 0.1536 | 2400 | 1.9148 | 0.0 |
2.3485 | 0.16 | 2500 | 1.4721 | 0.0 |
3.1889 | 0.1664 | 2600 | 1.3520 | 0.0 |
2.2109 | 0.1728 | 2700 | 1.1634 | 0.001 |
2.2771 | 0.1792 | 2800 | 1.2053 | 0.003 |
2.4756 | 0.1856 | 2900 | 1.2916 | 0.0 |
2.085 | 0.192 | 3000 | 1.2781 | 0.001 |
2.496 | 0.1984 | 3100 | 1.2191 | 0.001 |
2.1021 | 0.2048 | 3200 | 1.2496 | 0.001 |
2.5637 | 0.2112 | 3300 | 1.4160 | 0.001 |
2.2194 | 0.2176 | 3400 | 1.2784 | 0.006 |
1.9931 | 0.224 | 3500 | 1.3809 | 0.001 |
2.2398 | 0.2304 | 3600 | 1.2137 | 0.001 |
2.2651 | 0.2368 | 3700 | 1.2654 | 0.001 |
2.3313 | 0.2432 | 3800 | 1.1569 | 0.007 |
2.3756 | 0.2496 | 3900 | 1.2921 | 0.004 |
2.5309 | 0.256 | 4000 | 1.3908 | 0.0 |
2.2903 | 0.2624 | 4100 | 1.2230 | 0.001 |
2.0149 | 0.2688 | 4200 | 1.1809 | 0.002 |
2.2713 | 0.2752 | 4300 | 1.4983 | 0.001 |
2.2298 | 0.2816 | 4400 | 1.2858 | 0.004 |
2.4944 | 0.288 | 4500 | 1.4696 | 0.0 |
2.2138 | 0.2944 | 4600 | 1.2601 | 0.001 |
2.1888 | 0.3008 | 4700 | 1.2084 | 0.008 |
2.6511 | 0.3072 | 4800 | 1.3996 | 0.003 |
2.0815 | 0.3136 | 4900 | 1.1967 | 0.003 |
2.296 | 0.32 | 5000 | 1.2770 | 0.001 |
2.3372 | 0.3264 | 5100 | 1.2541 | 0.0 |
2.0872 | 0.3328 | 5200 | 1.1923 | 0.001 |
2.1522 | 0.3392 | 5300 | 1.2390 | 0.005 |
1.9354 | 0.3456 | 5400 | 1.1832 | 0.005 |
2.5261 | 0.352 | 5500 | 1.5203 | 0.001 |
2.134 | 0.3584 | 5600 | 1.1531 | 0.004 |
1.7733 | 0.3648 | 5700 | 1.2219 | 0.015 |
1.8473 | 0.3712 | 5800 | 1.1778 | 0.018 |
2.1981 | 0.3776 | 5900 | 1.3320 | 0.001 |
2.0556 | 0.384 | 6000 | 1.5240 | 0.01 |
1.9013 | 0.3904 | 6100 | 1.3080 | 0.008 |
1.9382 | 0.3968 | 6200 | 1.0881 | 0.017 |
1.9539 | 0.4032 | 6300 | 1.1345 | 0.025 |
1.9041 | 0.4096 | 6400 | 1.5530 | 0.005 |
2.0314 | 0.416 | 6500 | 1.1389 | 0.023 |
1.9645 | 0.4224 | 6600 | 1.1751 | 0.018 |
1.9642 | 0.4288 | 6700 | 1.1277 | 0.03 |
1.8727 | 0.4352 | 6800 | 1.2153 | 0.001 |
1.6457 | 0.4416 | 6900 | 1.5273 | 0.059 |
1.3439 | 0.448 | 7000 | 0.8178 | 0.055 |
0.6969 | 0.4544 | 7100 | 0.6332 | 0.092 |
0.9132 | 0.4608 | 7200 | 0.9930 | 0.032 |
0.5933 | 0.4672 | 7300 | 0.5563 | 0.292 |
0.4775 | 0.4736 | 7400 | 0.6892 | 0.275 |
0.8709 | 0.48 | 7500 | 1.1903 | 0.074 |
0.6346 | 0.4864 | 7600 | 0.8924 | 0.159 |
0.756 | 0.4928 | 7700 | 1.1650 | 0.135 |
0.283 | 0.4992 | 7800 | 0.7111 | 0.105 |
0.2729 | 0.5056 | 7900 | 0.3804 | 0.135 |
1.1775 | 0.512 | 8000 | 1.3814 | 0.122 |
0.1442 | 0.5184 | 8100 | 0.3274 | 0.491 |
0.9447 | 0.5248 | 8200 | 0.7572 | 0.203 |
0.5056 | 0.5312 | 8300 | 0.4948 | 0.166 |
0.5298 | 0.5376 | 8400 | 0.5869 | 0.279 |
0.1373 | 0.544 | 8500 | 0.7485 | 0.2 |
0.0449 | 0.5504 | 8600 | 0.2730 | 0.375 |
0.1203 | 0.5568 | 8700 | 0.3131 | 0.258 |
0.0388 | 0.5632 | 8800 | 0.1571 | 0.477 |
0.0707 | 0.5696 | 8900 | 0.1798 | 0.459 |
0.8594 | 0.576 | 9000 | 0.7271 | 0.156 |
0.1756 | 0.5824 | 9100 | 0.3364 | 0.307 |
0.4308 | 0.5888 | 9200 | 0.3278 | 0.334 |
0.2429 | 0.5952 | 9300 | 0.6799 | 0.068 |
0.008 | 0.6016 | 9400 | 0.1588 | 0.443 |
0.0404 | 0.608 | 9500 | 0.2014 | 0.43 |
0.0879 | 0.6144 | 9600 | 0.5365 | 0.136 |
0.6424 | 0.6208 | 9700 | 0.6502 | 0.228 |
0.1784 | 0.6272 | 9800 | 0.5427 | 0.088 |
0.0782 | 0.6336 | 9900 | 1.0986 | 0.211 |
0.0053 | 0.64 | 10000 | 0.1458 | 0.632 |
0.0158 | 0.6464 | 10100 | 0.1768 | 0.456 |
0.0506 | 0.6528 | 10200 | 0.1966 | 0.409 |
0.017 | 0.6592 | 10300 | 0.2878 | 0.195 |
0.0401 | 0.6656 | 10400 | 0.3751 | 0.246 |
0.0371 | 0.672 | 10500 | 0.2150 | 0.389 |
0.0237 | 0.6784 | 10600 | 0.0889 | 0.567 |
0.0158 | 0.6848 | 10700 | 0.0455 | 0.787 |
0.0112 | 0.6912 | 10800 | 0.2969 | 0.454 |
0.0105 | 0.6976 | 10900 | 0.4749 | 0.454 |
0.0051 | 0.704 | 11000 | 0.0889 | 0.732 |
0.0072 | 0.7104 | 11100 | 0.1155 | 0.723 |
0.0009 | 0.7168 | 11200 | 0.1212 | 0.701 |
0.0012 | 0.7232 | 11300 | 0.1257 | 0.574 |
0.0071 | 0.7296 | 11400 | 0.1758 | 0.618 |
0.0006 | 0.736 | 11500 | 0.0439 | 0.867 |
0.0008 | 0.7424 | 11600 | 0.2523 | 0.511 |
0.0129 | 0.7488 | 11700 | 0.1786 | 0.612 |
0.0001 | 0.7552 | 11800 | 0.0333 | 0.838 |
0.0017 | 0.7616 | 11900 | 0.1826 | 0.524 |
0.0002 | 0.768 | 12000 | 0.1427 | 0.499 |
0.0001 | 0.7744 | 12100 | 0.0132 | 0.952 |
0.0003 | 0.7808 | 12200 | 0.0720 | 0.692 |
0.0001 | 0.7872 | 12300 | 0.0181 | 0.935 |
0.0004 | 0.7936 | 12400 | 0.0166 | 0.926 |
0.0062 | 0.8 | 12500 | 0.0919 | 0.642 |
0.0003 | 0.8064 | 12600 | 0.0160 | 0.915 |
0.0 | 0.8128 | 12700 | 0.0232 | 0.911 |
0.0001 | 0.8192 | 12800 | 0.0177 | 0.921 |
0.0001 | 0.8256 | 12900 | 0.0448 | 0.812 |
0.0001 | 0.832 | 13000 | 0.0027 | 0.984 |
0.0001 | 0.8384 | 13100 | 0.0877 | 0.717 |
0.028 | 0.8448 | 13200 | 0.0960 | 0.804 |
0.0078 | 0.8512 | 13300 | 0.0969 | 0.66 |
0.0 | 0.8576 | 13400 | 0.0824 | 0.736 |
0.0001 | 0.864 | 13500 | 0.0756 | 0.718 |
0.0 | 0.8704 | 13600 | 0.0649 | 0.778 |
0.0 | 0.8768 | 13700 | 0.0152 | 0.927 |
0.0002 | 0.8832 | 13800 | 0.0610 | 0.813 |
0.0 | 0.8896 | 13900 | 0.0067 | 0.968 |
0.0015 | 0.896 | 14000 | 0.0314 | 0.867 |
0.0005 | 0.9024 | 14100 | 0.0174 | 0.92 |
0.0 | 0.9088 | 14200 | 0.0864 | 0.716 |
0.0001 | 0.9152 | 14300 | 0.0513 | 0.807 |
0.0006 | 0.9216 | 14400 | 0.0106 | 0.95 |
0.0009 | 0.928 | 14500 | 0.0238 | 0.905 |
0.0001 | 0.9344 | 14600 | 0.0335 | 0.856 |
0.0 | 0.9408 | 14700 | 0.0411 | 0.829 |
0.0 | 0.9472 | 14800 | 0.0456 | 0.822 |
0.0 | 0.9536 | 14900 | 0.0425 | 0.833 |
0.0 | 0.96 | 15000 | 0.0460 | 0.821 |
0.0 | 0.9664 | 15100 | 0.0457 | 0.821 |
0.0 | 0.9728 | 15200 | 0.0460 | 0.823 |
0.0 | 0.9792 | 15300 | 0.0477 | 0.821 |
0.0023 | 0.9856 | 15400 | 0.0474 | 0.821 |
0.0 | 0.992 | 15500 | 0.0464 | 0.822 |
0.0 | 0.9984 | 15600 | 0.0462 | 0.822 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support