reverse_add_replicate_eval20
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5977
- Accuracy: 0.152
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0 | 0 | 2.7461 | 0.0 |
4.606 | 0.0064 | 100 | 2.3244 | 0.0 |
4.3511 | 0.0128 | 200 | 2.2893 | 0.0 |
4.2736 | 0.0192 | 300 | 2.2618 | 0.0 |
4.2322 | 0.0256 | 400 | 2.3035 | 0.0 |
4.0639 | 0.032 | 500 | 2.3040 | 0.0 |
3.8943 | 0.0384 | 600 | 2.0854 | 0.0 |
3.3366 | 0.0448 | 700 | 1.9206 | 0.0 |
3.4818 | 0.0512 | 800 | 1.9729 | 0.0 |
2.9654 | 0.0576 | 900 | 1.7195 | 0.0 |
2.8051 | 0.064 | 1000 | 1.8885 | 0.0 |
2.8262 | 0.0704 | 1100 | 1.8551 | 0.0 |
2.2517 | 0.0768 | 1200 | 1.4494 | 0.0 |
2.5273 | 0.0832 | 1300 | 1.4894 | 0.0 |
2.7544 | 0.0896 | 1400 | 1.5736 | 0.0 |
2.6949 | 0.096 | 1500 | 1.5048 | 0.0 |
2.3982 | 0.1024 | 1600 | 1.5953 | 0.0 |
2.3242 | 0.1088 | 1700 | 1.4277 | 0.0 |
2.4114 | 0.1152 | 1800 | 1.3573 | 0.0 |
2.148 | 0.1216 | 1900 | 1.4122 | 0.0 |
2.4634 | 0.128 | 2000 | 1.5465 | 0.0 |
2.6747 | 0.1344 | 2100 | 1.3861 | 0.0 |
2.2793 | 0.1408 | 2200 | 1.3392 | 0.0 |
2.3165 | 0.1472 | 2300 | 1.7926 | 0.0 |
2.3105 | 0.1536 | 2400 | 1.4090 | 0.0 |
2.3073 | 0.16 | 2500 | 1.3394 | 0.0 |
2.3897 | 0.1664 | 2600 | 1.8963 | 0.0 |
2.3624 | 0.1728 | 2700 | 1.4221 | 0.0 |
2.3751 | 0.1792 | 2800 | 1.3648 | 0.0 |
2.3097 | 0.1856 | 2900 | 1.2527 | 0.0 |
2.3446 | 0.192 | 3000 | 1.6883 | 0.0 |
2.3329 | 0.1984 | 3100 | 1.6019 | 0.0 |
2.0083 | 0.2048 | 3200 | 1.3389 | 0.0 |
2.7518 | 0.2112 | 3300 | 1.5740 | 0.0 |
2.161 | 0.2176 | 3400 | 1.3971 | 0.0 |
1.9734 | 0.224 | 3500 | 1.4552 | 0.0 |
2.304 | 0.2304 | 3600 | 1.3638 | 0.0 |
2.1737 | 0.2368 | 3700 | 1.2754 | 0.0 |
2.4747 | 0.2432 | 3800 | 1.4057 | 0.0 |
2.4181 | 0.2496 | 3900 | 1.2912 | 0.0 |
2.476 | 0.256 | 4000 | 1.5178 | 0.0 |
2.2598 | 0.2624 | 4100 | 1.2496 | 0.001 |
2.0762 | 0.2688 | 4200 | 1.2883 | 0.001 |
2.1891 | 0.2752 | 4300 | 1.4029 | 0.001 |
2.265 | 0.2816 | 4400 | 1.3490 | 0.001 |
2.3795 | 0.288 | 4500 | 1.3824 | 0.0 |
2.2191 | 0.2944 | 4600 | 1.2194 | 0.0 |
2.2626 | 0.3008 | 4700 | 2.0928 | 0.0 |
2.1465 | 0.3072 | 4800 | 2.1572 | 0.0 |
2.1083 | 0.3136 | 4900 | 1.2283 | 0.0 |
2.2702 | 0.32 | 5000 | 1.6617 | 0.0 |
2.3743 | 0.3264 | 5100 | 1.2966 | 0.0 |
2.2742 | 0.3328 | 5200 | 1.3245 | 0.0 |
2.3599 | 0.3392 | 5300 | 1.8904 | 0.0 |
2.098 | 0.3456 | 5400 | 1.3557 | 0.0 |
2.3282 | 0.352 | 5500 | 1.4325 | 0.0 |
2.5855 | 0.3584 | 5600 | 1.4006 | 0.001 |
2.2062 | 0.3648 | 5700 | 1.4814 | 0.001 |
1.9578 | 0.3712 | 5800 | 1.2018 | 0.0 |
1.835 | 0.3776 | 5900 | 1.2935 | 0.007 |
1.2428 | 0.384 | 6000 | 1.2289 | 0.01 |
0.9495 | 0.3904 | 6100 | 0.9777 | 0.005 |
0.7258 | 0.3968 | 6200 | 1.2510 | 0.005 |
0.7078 | 0.4032 | 6300 | 0.8512 | 0.005 |
1.6587 | 0.4096 | 6400 | 1.6921 | 0.0 |
0.2275 | 0.416 | 6500 | 0.8907 | 0.026 |
0.2337 | 0.4224 | 6600 | 0.9523 | 0.014 |
0.1419 | 0.4288 | 6700 | 0.9131 | 0.055 |
0.0966 | 0.4352 | 6800 | 0.5881 | 0.069 |
0.078 | 0.4416 | 6900 | 1.0046 | 0.007 |
0.1558 | 0.448 | 7000 | 0.8644 | 0.159 |
0.1707 | 0.4544 | 7100 | 0.6869 | 0.005 |
0.1822 | 0.4608 | 7200 | 1.1353 | 0.0 |
0.168 | 0.4672 | 7300 | 2.2028 | 0.006 |
0.1243 | 0.4736 | 7400 | 0.8663 | 0.089 |
0.1158 | 0.48 | 7500 | 0.5240 | 0.048 |
0.0814 | 0.4864 | 7600 | 0.7781 | 0.032 |
0.1063 | 0.4928 | 7700 | 1.7465 | 0.002 |
0.03 | 0.4992 | 7800 | 0.2271 | 0.394 |
0.249 | 0.5056 | 7900 | 1.6322 | 0.0 |
0.1378 | 0.512 | 8000 | 1.0434 | 0.04 |
0.0626 | 0.5184 | 8100 | 1.4816 | 0.014 |
0.0522 | 0.5248 | 8200 | 0.8079 | 0.185 |
0.1477 | 0.5312 | 8300 | 0.5211 | 0.068 |
0.2431 | 0.5376 | 8400 | 1.0927 | 0.006 |
0.0557 | 0.544 | 8500 | 0.7979 | 0.111 |
0.0614 | 0.5504 | 8600 | 0.3891 | 0.161 |
0.0702 | 0.5568 | 8700 | 2.3846 | 0.0 |
0.0346 | 0.5632 | 8800 | 0.8542 | 0.04 |
0.0039 | 0.5696 | 8900 | 1.1460 | 0.008 |
0.0833 | 0.576 | 9000 | 1.3256 | 0.027 |
0.008 | 0.5824 | 9100 | 0.5109 | 0.179 |
0.0013 | 0.5888 | 9200 | 0.8421 | 0.057 |
0.2244 | 0.5952 | 9300 | 2.2713 | 0.0 |
0.0018 | 0.6016 | 9400 | 0.7648 | 0.112 |
0.0006 | 0.608 | 9500 | 0.8097 | 0.203 |
0.013 | 0.6144 | 9600 | 0.4594 | 0.231 |
0.0288 | 0.6208 | 9700 | 0.5187 | 0.217 |
0.066 | 0.6272 | 9800 | 0.9105 | 0.172 |
0.001 | 0.6336 | 9900 | 0.9449 | 0.047 |
0.0315 | 0.64 | 10000 | 1.0977 | 0.054 |
0.0021 | 0.6464 | 10100 | 0.6328 | 0.097 |
0.0067 | 0.6528 | 10200 | 0.7584 | 0.09 |
0.0171 | 0.6592 | 10300 | 1.7368 | 0.019 |
0.0028 | 0.6656 | 10400 | 1.2867 | 0.029 |
0.0006 | 0.672 | 10500 | 1.9352 | 0.002 |
0.0001 | 0.6784 | 10600 | 1.0054 | 0.052 |
0.0225 | 0.6848 | 10700 | 1.2227 | 0.053 |
0.0001 | 0.6912 | 10800 | 1.1978 | 0.02 |
0.0064 | 0.6976 | 10900 | 1.2889 | 0.053 |
0.0001 | 0.704 | 11000 | 1.2814 | 0.11 |
0.0 | 0.7104 | 11100 | 2.1751 | 0.02 |
0.0042 | 0.7168 | 11200 | 1.7401 | 0.106 |
0.0024 | 0.7232 | 11300 | 2.0528 | 0.001 |
0.0066 | 0.7296 | 11400 | 1.9593 | 0.015 |
0.0001 | 0.736 | 11500 | 0.4190 | 0.406 |
0.0001 | 0.7424 | 11600 | 0.5128 | 0.159 |
0.0002 | 0.7488 | 11700 | 0.3373 | 0.319 |
0.0001 | 0.7552 | 11800 | 0.4271 | 0.282 |
0.0 | 0.7616 | 11900 | 0.3205 | 0.321 |
0.0 | 0.768 | 12000 | 0.2878 | 0.355 |
0.0 | 0.7744 | 12100 | 0.3406 | 0.299 |
0.0 | 0.7808 | 12200 | 0.3432 | 0.303 |
0.0 | 0.7872 | 12300 | 0.3399 | 0.305 |
0.0 | 0.7936 | 12400 | 0.3686 | 0.272 |
0.0 | 0.8 | 12500 | 0.3693 | 0.274 |
0.0 | 0.8064 | 12600 | 0.3618 | 0.284 |
0.0 | 0.8128 | 12700 | 0.3597 | 0.287 |
0.0 | 0.8192 | 12800 | 0.3564 | 0.28 |
0.0 | 0.8256 | 12900 | 0.3328 | 0.311 |
0.0 | 0.832 | 13000 | 0.3312 | 0.314 |
0.0 | 0.8384 | 13100 | 0.3428 | 0.303 |
0.0 | 0.8448 | 13200 | 0.3472 | 0.299 |
0.0 | 0.8512 | 13300 | 0.3498 | 0.298 |
0.0 | 0.8576 | 13400 | 0.3498 | 0.301 |
0.0 | 0.864 | 13500 | 0.3502 | 0.301 |
0.0 | 0.8704 | 13600 | 0.3502 | 0.303 |
0.0 | 0.8768 | 13700 | 0.3504 | 0.305 |
0.0 | 0.8832 | 13800 | 0.3579 | 0.299 |
0.0 | 0.8896 | 13900 | 0.3566 | 0.299 |
0.0 | 0.896 | 14000 | 0.3573 | 0.295 |
0.0 | 0.9024 | 14100 | 0.3582 | 0.297 |
0.0 | 0.9088 | 14200 | 0.6175 | 0.138 |
0.0 | 0.9152 | 14300 | 0.6086 | 0.143 |
0.0 | 0.9216 | 14400 | 0.6078 | 0.143 |
0.0 | 0.928 | 14500 | 0.6075 | 0.145 |
0.0 | 0.9344 | 14600 | 0.6054 | 0.146 |
0.0 | 0.9408 | 14700 | 0.6038 | 0.147 |
0.0 | 0.9472 | 14800 | 0.6029 | 0.149 |
0.0 | 0.9536 | 14900 | 0.6017 | 0.149 |
0.0 | 0.96 | 15000 | 0.5989 | 0.151 |
0.0 | 0.9664 | 15100 | 0.5978 | 0.151 |
0.0 | 0.9728 | 15200 | 0.5979 | 0.151 |
0.0 | 0.9792 | 15300 | 0.5982 | 0.151 |
0.0 | 0.9856 | 15400 | 0.5980 | 0.151 |
0.0 | 0.992 | 15500 | 0.5977 | 0.152 |
0.0 | 0.9984 | 15600 | 0.5977 | 0.152 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support