reverse_add_replicate_eval30_dim10
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.8838
- Accuracy: 0.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 7658372
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0 | 0 | 2.6418 | 0.0 |
2.6187 | 0.0064 | 100 | 2.6171 | 0.0 |
2.5639 | 0.0128 | 200 | 2.5581 | 0.0 |
2.5161 | 0.0192 | 300 | 2.5050 | 0.0 |
2.4712 | 0.0256 | 400 | 2.4622 | 0.0 |
2.4413 | 0.032 | 500 | 2.4326 | 0.0 |
2.4217 | 0.0384 | 600 | 2.4143 | 0.0 |
2.4071 | 0.0448 | 700 | 2.4031 | 0.0 |
2.399 | 0.0512 | 800 | 2.3959 | 0.0 |
2.3893 | 0.0576 | 900 | 2.4331 | 0.0 |
2.3787 | 0.064 | 1000 | 2.4867 | 0.0 |
2.3759 | 0.0704 | 1100 | 2.5121 | 0.0 |
2.3726 | 0.0768 | 1200 | 2.4826 | 0.0 |
2.3722 | 0.0832 | 1300 | 2.5461 | 0.0 |
2.3732 | 0.0896 | 1400 | 2.5240 | 0.0 |
2.3676 | 0.096 | 1500 | 2.5271 | 0.0 |
2.3652 | 0.1024 | 1600 | 2.6088 | 0.0 |
2.3686 | 0.1088 | 1700 | 2.6143 | 0.0 |
2.3657 | 0.1152 | 1800 | 2.5762 | 0.0 |
2.3669 | 0.1216 | 1900 | 2.6150 | 0.0 |
2.3655 | 0.128 | 2000 | 2.5276 | 0.0 |
2.3604 | 0.1344 | 2100 | 2.6092 | 0.0 |
2.3674 | 0.1408 | 2200 | 2.6175 | 0.0 |
2.3609 | 0.1472 | 2300 | 2.5985 | 0.0 |
2.3611 | 0.1536 | 2400 | 2.5659 | 0.0 |
2.3587 | 0.16 | 2500 | 2.5768 | 0.0 |
2.3649 | 0.1664 | 2600 | 2.5677 | 0.0 |
2.3672 | 0.1728 | 2700 | 2.5894 | 0.0 |
2.3608 | 0.1792 | 2800 | 2.5571 | 0.0 |
2.359 | 0.1856 | 2900 | 2.6120 | 0.0 |
2.3648 | 0.192 | 3000 | 2.5527 | 0.0 |
2.3598 | 0.1984 | 3100 | 2.5325 | 0.0 |
2.364 | 0.2048 | 3200 | 2.6900 | 0.0 |
2.361 | 0.2112 | 3300 | 2.6169 | 0.0 |
2.3571 | 0.2176 | 3400 | 2.5441 | 0.0 |
2.3676 | 0.224 | 3500 | 2.6195 | 0.0 |
2.3556 | 0.2304 | 3600 | 2.5318 | 0.0 |
2.3581 | 0.2368 | 3700 | 2.6511 | 0.0 |
2.3576 | 0.2432 | 3800 | 2.6676 | 0.0 |
2.3618 | 0.2496 | 3900 | 2.6239 | 0.0 |
2.3497 | 0.256 | 4000 | 2.7394 | 0.0 |
2.3621 | 0.2624 | 4100 | 2.6073 | 0.0 |
2.3644 | 0.2688 | 4200 | 2.5838 | 0.0 |
2.3546 | 0.2752 | 4300 | 2.6142 | 0.0 |
2.3597 | 0.2816 | 4400 | 2.5885 | 0.0 |
2.3659 | 0.288 | 4500 | 2.5656 | 0.0 |
2.3527 | 0.2944 | 4600 | 2.6459 | 0.0 |
2.3558 | 0.3008 | 4700 | 2.6791 | 0.0 |
2.3619 | 0.3072 | 4800 | 2.7288 | 0.0 |
2.3575 | 0.3136 | 4900 | 2.5402 | 0.0 |
2.3649 | 0.32 | 5000 | 2.7326 | 0.0 |
2.359 | 0.3264 | 5100 | 2.7206 | 0.0 |
2.3598 | 0.3328 | 5200 | 2.6031 | 0.0 |
2.3628 | 0.3392 | 5300 | 2.6511 | 0.0 |
2.356 | 0.3456 | 5400 | 2.6031 | 0.0 |
2.3599 | 0.352 | 5500 | 2.5671 | 0.0 |
2.3615 | 0.3584 | 5600 | 2.6522 | 0.0 |
2.3641 | 0.3648 | 5700 | 2.5095 | 0.0 |
2.359 | 0.3712 | 5800 | 2.6535 | 0.0 |
2.3613 | 0.3776 | 5900 | 2.6439 | 0.0 |
2.3583 | 0.384 | 6000 | 2.7354 | 0.0 |
2.3627 | 0.3904 | 6100 | 2.6849 | 0.0 |
2.3553 | 0.3968 | 6200 | 2.6319 | 0.0 |
2.3608 | 0.4032 | 6300 | 2.7023 | 0.0 |
2.3585 | 0.4096 | 6400 | 2.6529 | 0.0 |
2.3582 | 0.416 | 6500 | 2.6346 | 0.0 |
2.3623 | 0.4224 | 6600 | 2.7107 | 0.0 |
2.3614 | 0.4288 | 6700 | 2.6259 | 0.0 |
2.3549 | 0.4352 | 6800 | 2.6899 | 0.0 |
2.3531 | 0.4416 | 6900 | 2.6430 | 0.0 |
2.362 | 0.448 | 7000 | 2.7174 | 0.0 |
2.3588 | 0.4544 | 7100 | 2.7537 | 0.0 |
2.3572 | 0.4608 | 7200 | 2.6856 | 0.0 |
2.3579 | 0.4672 | 7300 | 2.6289 | 0.0 |
2.3563 | 0.4736 | 7400 | 2.6563 | 0.0 |
2.3535 | 0.48 | 7500 | 2.7744 | 0.0 |
2.3537 | 0.4864 | 7600 | 2.7473 | 0.0 |
2.3513 | 0.4928 | 7700 | 2.6450 | 0.0 |
2.3623 | 0.4992 | 7800 | 2.7200 | 0.0 |
2.3608 | 0.5056 | 7900 | 2.8095 | 0.0 |
2.3633 | 0.512 | 8000 | 2.6141 | 0.0 |
2.3621 | 0.5184 | 8100 | 2.7340 | 0.0 |
2.3551 | 0.5248 | 8200 | 2.7179 | 0.0 |
2.3486 | 0.5312 | 8300 | 2.6570 | 0.0 |
2.358 | 0.5376 | 8400 | 2.7387 | 0.0 |
2.3545 | 0.544 | 8500 | 2.7583 | 0.0 |
2.3703 | 0.5504 | 8600 | 2.7370 | 0.0 |
2.3641 | 0.5568 | 8700 | 2.6389 | 0.0 |
2.3497 | 0.5632 | 8800 | 2.7917 | 0.0 |
2.3555 | 0.5696 | 8900 | 2.6701 | 0.0 |
2.351 | 0.576 | 9000 | 2.7864 | 0.0 |
2.3467 | 0.5824 | 9100 | 2.6683 | 0.0 |
2.3536 | 0.5888 | 9200 | 2.7703 | 0.0 |
2.3581 | 0.5952 | 9300 | 2.7249 | 0.0 |
2.35 | 0.6016 | 9400 | 2.7294 | 0.0 |
2.3459 | 0.608 | 9500 | 2.7655 | 0.0 |
2.3614 | 0.6144 | 9600 | 2.7766 | 0.0 |
2.359 | 0.6208 | 9700 | 2.8382 | 0.0 |
2.351 | 0.6272 | 9800 | 2.7488 | 0.0 |
2.3562 | 0.6336 | 9900 | 2.7969 | 0.0 |
2.3492 | 0.64 | 10000 | 2.7323 | 0.0 |
2.3575 | 0.6464 | 10100 | 2.7592 | 0.0 |
2.3544 | 0.6528 | 10200 | 2.8020 | 0.0 |
2.3604 | 0.6592 | 10300 | 2.8032 | 0.0 |
2.3617 | 0.6656 | 10400 | 2.7288 | 0.0 |
2.3486 | 0.672 | 10500 | 2.8258 | 0.0 |
2.3561 | 0.6784 | 10600 | 2.8314 | 0.0 |
2.345 | 0.6848 | 10700 | 2.7325 | 0.0 |
2.3537 | 0.6912 | 10800 | 2.8317 | 0.0 |
2.3536 | 0.6976 | 10900 | 2.8196 | 0.0 |
2.3556 | 0.704 | 11000 | 2.8126 | 0.0 |
2.3585 | 0.7104 | 11100 | 2.8155 | 0.0 |
2.3546 | 0.7168 | 11200 | 2.7914 | 0.0 |
2.3567 | 0.7232 | 11300 | 2.7860 | 0.0 |
2.3644 | 0.7296 | 11400 | 2.7750 | 0.0 |
2.3533 | 0.736 | 11500 | 2.7948 | 0.0 |
2.3476 | 0.7424 | 11600 | 2.8808 | 0.0 |
2.3545 | 0.7488 | 11700 | 2.8348 | 0.0 |
2.3501 | 0.7552 | 11800 | 2.8396 | 0.0 |
2.3598 | 0.7616 | 11900 | 2.8697 | 0.0 |
2.3658 | 0.768 | 12000 | 2.8164 | 0.0 |
2.3585 | 0.7744 | 12100 | 2.8379 | 0.0 |
2.3533 | 0.7808 | 12200 | 2.8246 | 0.0 |
2.3547 | 0.7872 | 12300 | 2.8895 | 0.0 |
2.3579 | 0.7936 | 12400 | 2.8351 | 0.0 |
2.3604 | 0.8 | 12500 | 2.8469 | 0.0 |
2.3543 | 0.8064 | 12600 | 2.8388 | 0.0 |
2.3529 | 0.8128 | 12700 | 2.8380 | 0.0 |
2.3602 | 0.8192 | 12800 | 2.9418 | 0.0 |
2.3584 | 0.8256 | 12900 | 2.8014 | 0.0 |
2.3583 | 0.832 | 13000 | 2.8678 | 0.0 |
2.3537 | 0.8384 | 13100 | 2.8801 | 0.0 |
2.3607 | 0.8448 | 13200 | 2.8327 | 0.0 |
2.3497 | 0.8512 | 13300 | 2.9043 | 0.0 |
2.362 | 0.8576 | 13400 | 2.8958 | 0.0 |
2.351 | 0.864 | 13500 | 2.8562 | 0.0 |
2.3474 | 0.8704 | 13600 | 2.8654 | 0.0 |
2.3624 | 0.8768 | 13700 | 2.8524 | 0.0 |
2.3529 | 0.8832 | 13800 | 2.8852 | 0.0 |
2.3574 | 0.8896 | 13900 | 2.8282 | 0.0 |
2.3513 | 0.896 | 14000 | 2.9463 | 0.0 |
2.3596 | 0.9024 | 14100 | 2.8713 | 0.0 |
2.3537 | 0.9088 | 14200 | 2.9021 | 0.0 |
2.3445 | 0.9152 | 14300 | 2.8655 | 0.0 |
2.3535 | 0.9216 | 14400 | 2.8587 | 0.0 |
2.3541 | 0.928 | 14500 | 2.8703 | 0.0 |
2.3496 | 0.9344 | 14600 | 2.8815 | 0.0 |
2.3604 | 0.9408 | 14700 | 2.8767 | 0.0 |
2.3583 | 0.9472 | 14800 | 2.8773 | 0.0 |
2.3645 | 0.9536 | 14900 | 2.8768 | 0.0 |
2.3651 | 0.96 | 15000 | 2.8865 | 0.0 |
2.3451 | 0.9664 | 15100 | 2.8801 | 0.0 |
2.3501 | 0.9728 | 15200 | 2.8870 | 0.0 |
2.3536 | 0.9792 | 15300 | 2.8843 | 0.0 |
2.3427 | 0.9856 | 15400 | 2.8805 | 0.0 |
2.356 | 0.992 | 15500 | 2.8834 | 0.0 |
2.355 | 0.9984 | 15600 | 2.8838 | 0.0 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support