reverseadd_grad_lr5e-4_batch128_train1-16_eval17
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0001
- Accuracy: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 512
- seed: 23452399
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0 | 0 | 2.7354 | 0.0 |
2.3001 | 0.0064 | 100 | 2.3341 | 0.0 |
2.2573 | 0.0128 | 200 | 2.2689 | 0.0 |
2.1307 | 0.0192 | 300 | 2.2215 | 0.0 |
2.1874 | 0.0256 | 400 | 2.3109 | 0.0 |
2.0636 | 0.032 | 500 | 2.1578 | 0.0 |
2.0371 | 0.0384 | 600 | 2.1274 | 0.0 |
1.9854 | 0.0448 | 700 | 2.0884 | 0.0 |
1.8053 | 0.0512 | 800 | 1.9491 | 0.0 |
1.588 | 0.0576 | 900 | 1.9378 | 0.0 |
1.4545 | 0.064 | 1000 | 1.6119 | 0.0 |
1.6136 | 0.0704 | 1100 | 1.5111 | 0.0 |
1.323 | 0.0768 | 1200 | 1.4112 | 0.0001 |
1.2738 | 0.0832 | 1300 | 1.4040 | 0.0001 |
1.5684 | 0.0896 | 1400 | 1.6347 | 0.0 |
1.3312 | 0.096 | 1500 | 1.3297 | 0.0001 |
1.5188 | 0.1024 | 1600 | 1.3486 | 0.0003 |
1.2757 | 0.1088 | 1700 | 1.2388 | 0.0013 |
1.2403 | 0.1152 | 1800 | 1.2430 | 0.003 |
1.1463 | 0.1216 | 1900 | 1.6443 | 0.0 |
1.0369 | 0.128 | 2000 | 1.2586 | 0.0022 |
1.2205 | 0.1344 | 2100 | 1.4236 | 0.0009 |
1.0753 | 0.1408 | 2200 | 1.2456 | 0.0016 |
1.0361 | 0.1472 | 2300 | 1.1779 | 0.0036 |
1.1248 | 0.1536 | 2400 | 1.1988 | 0.003 |
1.1393 | 0.16 | 2500 | 1.2391 | 0.0036 |
1.0798 | 0.1664 | 2600 | 1.3521 | 0.0014 |
1.154 | 0.1728 | 2700 | 1.3288 | 0.001 |
1.151 | 0.1792 | 2800 | 1.3656 | 0.0003 |
1.1431 | 0.1856 | 2900 | 1.1787 | 0.0018 |
1.1666 | 0.192 | 3000 | 1.2030 | 0.0003 |
1.1026 | 0.1984 | 3100 | 1.2107 | 0.003 |
0.9712 | 0.2048 | 3200 | 1.1011 | 0.0071 |
1.1517 | 0.2112 | 3300 | 1.1894 | 0.0019 |
1.0059 | 0.2176 | 3400 | 1.1406 | 0.0118 |
0.6743 | 0.224 | 3500 | 0.9754 | 0.0674 |
1.6739 | 0.2304 | 3600 | 1.3579 | 0.0279 |
0.5328 | 0.2368 | 3700 | 1.0295 | 0.0414 |
0.4591 | 0.2432 | 3800 | 0.6289 | 0.0597 |
0.3516 | 0.2496 | 3900 | 0.9261 | 0.0652 |
0.5235 | 0.256 | 4000 | 0.8943 | 0.0819 |
0.2313 | 0.2624 | 4100 | 0.2678 | 0.3804 |
0.1209 | 0.2688 | 4200 | 0.4773 | 0.1598 |
0.2631 | 0.2752 | 4300 | 0.3770 | 0.2562 |
0.1594 | 0.2816 | 4400 | 0.2692 | 0.3866 |
0.464 | 0.288 | 4500 | 0.7216 | 0.0712 |
0.0701 | 0.2944 | 4600 | 0.3765 | 0.3021 |
0.1762 | 0.3008 | 4700 | 0.2925 | 0.4238 |
0.1653 | 0.3072 | 4800 | 0.4192 | 0.1969 |
0.2013 | 0.3136 | 4900 | 0.4628 | 0.4159 |
0.1173 | 0.32 | 5000 | 0.1583 | 0.5036 |
0.1333 | 0.3264 | 5100 | 0.2021 | 0.4638 |
0.2037 | 0.3328 | 5200 | 0.6020 | 0.1938 |
0.1182 | 0.3392 | 5300 | 0.1793 | 0.3823 |
0.076 | 0.3456 | 5400 | 0.3461 | 0.4557 |
0.0679 | 0.352 | 5500 | 0.1652 | 0.5923 |
0.3404 | 0.3584 | 5600 | 0.9190 | 0.0853 |
0.1016 | 0.3648 | 5700 | 0.2257 | 0.4008 |
0.1253 | 0.3712 | 5800 | 0.2374 | 0.3607 |
0.1263 | 0.3776 | 5900 | 0.1838 | 0.5758 |
0.0373 | 0.384 | 6000 | 0.1551 | 0.6021 |
0.2316 | 0.3904 | 6100 | 0.2449 | 0.3412 |
0.0264 | 0.3968 | 6200 | 0.2449 | 0.5283 |
0.0277 | 0.4032 | 6300 | 0.1992 | 0.4666 |
0.0593 | 0.4096 | 6400 | 0.1258 | 0.6353 |
0.0192 | 0.416 | 6500 | 0.9236 | 0.3079 |
0.1597 | 0.4224 | 6600 | 0.6677 | 0.2828 |
0.0355 | 0.4288 | 6700 | 0.0936 | 0.7259 |
0.0205 | 0.4352 | 6800 | 0.1900 | 0.4763 |
0.0152 | 0.4416 | 6900 | 0.0952 | 0.6872 |
0.0628 | 0.448 | 7000 | 0.2097 | 0.5785 |
0.055 | 0.4544 | 7100 | 0.1130 | 0.6101 |
0.0254 | 0.4608 | 7200 | 0.0803 | 0.6827 |
0.0749 | 0.4672 | 7300 | 0.3225 | 0.322 |
0.0937 | 0.4736 | 7400 | 0.3891 | 0.3255 |
0.0463 | 0.48 | 7500 | 0.5192 | 0.3603 |
0.2356 | 0.4864 | 7600 | 0.4595 | 0.2672 |
0.0226 | 0.4928 | 7700 | 0.1535 | 0.5584 |
0.0377 | 0.4992 | 7800 | 0.1176 | 0.5465 |
0.0348 | 0.5056 | 7900 | 0.0697 | 0.7187 |
0.0129 | 0.512 | 8000 | 0.0233 | 0.9147 |
0.0099 | 0.5184 | 8100 | 0.0354 | 0.8403 |
0.0307 | 0.5248 | 8200 | 0.0362 | 0.8465 |
0.0166 | 0.5312 | 8300 | 0.3248 | 0.4201 |
0.0425 | 0.5376 | 8400 | 0.0668 | 0.766 |
0.0219 | 0.544 | 8500 | 0.0321 | 0.8611 |
0.0276 | 0.5504 | 8600 | 0.1465 | 0.6475 |
0.0076 | 0.5568 | 8700 | 0.2797 | 0.3921 |
0.0172 | 0.5632 | 8800 | 0.1322 | 0.6243 |
0.0086 | 0.5696 | 8900 | 0.0477 | 0.8366 |
0.0121 | 0.576 | 9000 | 0.0557 | 0.8158 |
0.0124 | 0.5824 | 9100 | 0.1376 | 0.6929 |
0.008 | 0.5888 | 9200 | 0.0572 | 0.7995 |
0.1436 | 0.5952 | 9300 | 0.6763 | 0.3113 |
0.0042 | 0.6016 | 9400 | 0.0391 | 0.8314 |
0.0009 | 0.608 | 9500 | 0.1703 | 0.6202 |
0.0051 | 0.6144 | 9600 | 0.1332 | 0.637 |
0.0037 | 0.6208 | 9700 | 0.0193 | 0.9096 |
0.0463 | 0.6272 | 9800 | 0.1289 | 0.6106 |
0.0043 | 0.6336 | 9900 | 0.0938 | 0.7845 |
0.002 | 0.64 | 10000 | 0.0332 | 0.8698 |
0.0041 | 0.6464 | 10100 | 0.1048 | 0.6827 |
0.0031 | 0.6528 | 10200 | 0.0227 | 0.92 |
0.0027 | 0.6592 | 10300 | 0.0181 | 0.9154 |
0.0011 | 0.6656 | 10400 | 0.0144 | 0.9445 |
0.0021 | 0.672 | 10500 | 0.0342 | 0.8897 |
0.003 | 0.6784 | 10600 | 0.0100 | 0.953 |
0.0056 | 0.6848 | 10700 | 0.0385 | 0.8645 |
0.0293 | 0.6912 | 10800 | 0.0619 | 0.7898 |
0.0756 | 0.6976 | 10900 | 0.0692 | 0.8003 |
0.0029 | 0.704 | 11000 | 0.0176 | 0.9494 |
0.0019 | 0.7104 | 11100 | 0.0497 | 0.819 |
0.0066 | 0.7168 | 11200 | 0.0057 | 0.9747 |
0.0117 | 0.7232 | 11300 | 0.0037 | 0.983 |
0.0002 | 0.7296 | 11400 | 0.0057 | 0.9815 |
0.0003 | 0.736 | 11500 | 0.0290 | 0.8783 |
0.0001 | 0.7424 | 11600 | 0.0070 | 0.9638 |
0.0003 | 0.7488 | 11700 | 0.0037 | 0.9836 |
0.0045 | 0.7552 | 11800 | 0.0031 | 0.9836 |
0.0001 | 0.7616 | 11900 | 0.0019 | 0.9923 |
0.001 | 0.768 | 12000 | 0.0193 | 0.9144 |
0.0001 | 0.7744 | 12100 | 0.0069 | 0.9778 |
0.0022 | 0.7808 | 12200 | 0.0168 | 0.9191 |
0.0044 | 0.7872 | 12300 | 0.0008 | 0.9967 |
0.0001 | 0.7936 | 12400 | 0.0068 | 0.9712 |
0.0006 | 0.8 | 12500 | 0.0056 | 0.9709 |
0.0003 | 0.8064 | 12600 | 0.0013 | 0.9952 |
0.0 | 0.8128 | 12700 | 0.0012 | 0.9939 |
0.0 | 0.8192 | 12800 | 0.0006 | 0.9974 |
0.0001 | 0.8256 | 12900 | 0.0059 | 0.9831 |
0.0 | 0.832 | 13000 | 0.0015 | 0.9936 |
0.0 | 0.8384 | 13100 | 0.0050 | 0.9789 |
0.0 | 0.8448 | 13200 | 0.0004 | 0.9988 |
0.0 | 0.8512 | 13300 | 0.0005 | 0.9986 |
0.0001 | 0.8576 | 13400 | 0.0003 | 0.9987 |
0.0 | 0.864 | 13500 | 0.0003 | 0.9983 |
0.0 | 0.8704 | 13600 | 0.0006 | 0.9971 |
0.0 | 0.8768 | 13700 | 0.0005 | 0.9976 |
0.0 | 0.8832 | 13800 | 0.0001 | 1.0 |
0.0 | 0.8896 | 13900 | 0.0001 | 0.9998 |
0.0 | 0.896 | 14000 | 0.0001 | 0.9997 |
0.0 | 0.9024 | 14100 | 0.0001 | 0.9995 |
0.0 | 0.9088 | 14200 | 0.0001 | 0.9997 |
0.0 | 0.9152 | 14300 | 0.0001 | 0.9998 |
0.0 | 0.9216 | 14400 | 0.0001 | 1.0 |
0.0 | 0.928 | 14500 | 0.0001 | 0.9999 |
0.0 | 0.9344 | 14600 | 0.0001 | 1.0 |
0.0 | 0.9408 | 14700 | 0.0001 | 0.9999 |
0.0 | 0.9472 | 14800 | 0.0001 | 0.9996 |
0.0 | 0.9536 | 14900 | 0.0001 | 0.9997 |
0.0 | 0.96 | 15000 | 0.0001 | 0.9997 |
0.0 | 0.9664 | 15100 | 0.0001 | 0.9998 |
0.0 | 0.9728 | 15200 | 0.0001 | 0.9997 |
0.0 | 0.9792 | 15300 | 0.0001 | 0.9998 |
0.0 | 0.9856 | 15400 | 0.0001 | 0.9998 |
0.0 | 0.992 | 15500 | 0.0001 | 1.0 |
0.0 | 0.9984 | 15600 | 0.0001 | 1.0 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support