reverseadd_grad_lr5e-4_batch128_train1-16_eval20
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.4107
- Accuracy: 0.0047
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 512
- seed: 23452399
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0 | 0 | 2.6189 | 0.0 |
2.3126 | 0.0064 | 100 | 2.4212 | 0.0 |
2.3014 | 0.0128 | 200 | 2.7997 | 0.0 |
2.1053 | 0.0192 | 300 | 2.3043 | 0.0 |
2.1135 | 0.0256 | 400 | 2.4034 | 0.0 |
2.0077 | 0.032 | 500 | 2.3071 | 0.0 |
1.8916 | 0.0384 | 600 | 2.3303 | 0.0 |
1.4702 | 0.0448 | 700 | 2.2955 | 0.0 |
1.7602 | 0.0512 | 800 | 2.1893 | 0.0 |
1.3611 | 0.0576 | 900 | 1.8532 | 0.0 |
1.4336 | 0.064 | 1000 | 2.1500 | 0.0 |
1.4735 | 0.0704 | 1100 | 2.3344 | 0.0 |
1.337 | 0.0768 | 1200 | 2.0044 | 0.0 |
1.2826 | 0.0832 | 1300 | 1.7355 | 0.0 |
1.3894 | 0.0896 | 1400 | 1.8579 | 0.0 |
1.207 | 0.096 | 1500 | 1.7779 | 0.0 |
1.1853 | 0.1024 | 1600 | 2.4584 | 0.0 |
1.2962 | 0.1088 | 1700 | 1.6932 | 0.0 |
1.2222 | 0.1152 | 1800 | 1.8017 | 0.0 |
1.1922 | 0.1216 | 1900 | 2.2908 | 0.0 |
1.1614 | 0.128 | 2000 | 2.0754 | 0.0 |
1.2162 | 0.1344 | 2100 | 2.1506 | 0.0 |
1.4371 | 0.1408 | 2200 | 1.8123 | 0.0 |
1.1184 | 0.1472 | 2300 | 2.0282 | 0.0 |
1.2485 | 0.1536 | 2400 | 1.7376 | 0.0 |
1.401 | 0.16 | 2500 | 1.9611 | 0.0 |
1.0925 | 0.1664 | 2600 | 1.6697 | 0.0 |
1.202 | 0.1728 | 2700 | 1.4670 | 0.0 |
1.0427 | 0.1792 | 2800 | 1.5938 | 0.0 |
1.1635 | 0.1856 | 2900 | 1.8398 | 0.0 |
1.2961 | 0.192 | 3000 | 1.9250 | 0.0 |
1.1353 | 0.1984 | 3100 | 2.2757 | 0.0 |
1.0599 | 0.2048 | 3200 | 1.5258 | 0.0 |
1.4959 | 0.2112 | 3300 | 2.1621 | 0.0 |
1.0803 | 0.2176 | 3400 | 1.5405 | 0.0 |
1.0108 | 0.224 | 3500 | 1.9600 | 0.0 |
1.0842 | 0.2304 | 3600 | 1.6962 | 0.0 |
1.1032 | 0.2368 | 3700 | 1.6884 | 0.0 |
1.058 | 0.2432 | 3800 | 2.4747 | 0.0 |
0.8304 | 0.2496 | 3900 | 1.6244 | 0.0 |
0.8012 | 0.256 | 4000 | 1.5484 | 0.0 |
0.8627 | 0.2624 | 4100 | 2.1026 | 0.0 |
1.0341 | 0.2688 | 4200 | 2.3054 | 0.0 |
0.6271 | 0.2752 | 4300 | 3.2138 | 0.0 |
0.6831 | 0.2816 | 4400 | 1.7375 | 0.0 |
0.665 | 0.288 | 4500 | 2.6200 | 0.0 |
0.6967 | 0.2944 | 4600 | 1.7028 | 0.0001 |
0.5405 | 0.3008 | 4700 | 2.1133 | 0.0 |
0.4726 | 0.3072 | 4800 | 2.8895 | 0.0 |
0.1771 | 0.3136 | 4900 | 1.3740 | 0.0 |
0.392 | 0.32 | 5000 | 1.9424 | 0.0 |
0.122 | 0.3264 | 5100 | 1.5694 | 0.0008 |
0.5041 | 0.3328 | 5200 | 2.4060 | 0.0 |
0.3685 | 0.3392 | 5300 | 1.4979 | 0.0 |
0.1561 | 0.3456 | 5400 | 2.2199 | 0.0 |
0.0859 | 0.352 | 5500 | 2.5312 | 0.0 |
0.1785 | 0.3584 | 5600 | 2.1402 | 0.0 |
0.21 | 0.3648 | 5700 | 2.4357 | 0.0 |
0.393 | 0.3712 | 5800 | 2.1774 | 0.0 |
0.252 | 0.3776 | 5900 | 2.9557 | 0.0 |
0.2698 | 0.384 | 6000 | 1.6799 | 0.0 |
0.0331 | 0.3904 | 6100 | 2.7578 | 0.0 |
0.1889 | 0.3968 | 6200 | 2.0488 | 0.0 |
0.0893 | 0.4032 | 6300 | 1.6913 | 0.0002 |
0.0458 | 0.4096 | 6400 | 2.1321 | 0.0 |
0.0599 | 0.416 | 6500 | 2.3688 | 0.0 |
0.1784 | 0.4224 | 6600 | 2.2809 | 0.0007 |
0.2613 | 0.4288 | 6700 | 1.4253 | 0.0013 |
0.0988 | 0.4352 | 6800 | 2.7203 | 0.0002 |
0.0863 | 0.4416 | 6900 | 3.5239 | 0.0 |
0.8155 | 0.448 | 7000 | 1.6010 | 0.0008 |
0.1067 | 0.4544 | 7100 | 1.5796 | 0.0 |
0.1404 | 0.4608 | 7200 | 2.8877 | 0.0 |
0.0381 | 0.4672 | 7300 | 2.5003 | 0.0 |
0.0114 | 0.4736 | 7400 | 1.4329 | 0.0025 |
0.0256 | 0.48 | 7500 | 2.6198 | 0.0 |
0.0281 | 0.4864 | 7600 | 2.6092 | 0.0 |
0.0186 | 0.4928 | 7700 | 1.2853 | 0.0001 |
0.0104 | 0.4992 | 7800 | 1.9111 | 0.0 |
0.0251 | 0.5056 | 7900 | 2.1367 | 0.0 |
0.2595 | 0.512 | 8000 | 2.1865 | 0.0003 |
0.0395 | 0.5184 | 8100 | 2.7420 | 0.0 |
0.0581 | 0.5248 | 8200 | 2.5521 | 0.0 |
0.1145 | 0.5312 | 8300 | 1.4171 | 0.0093 |
0.0152 | 0.5376 | 8400 | 2.8465 | 0.0 |
0.0281 | 0.544 | 8500 | 2.4825 | 0.0 |
0.0084 | 0.5504 | 8600 | 2.8063 | 0.0001 |
0.0063 | 0.5568 | 8700 | 2.7731 | 0.0 |
0.0705 | 0.5632 | 8800 | 3.4381 | 0.0 |
0.0521 | 0.5696 | 8900 | 3.1423 | 0.0 |
0.004 | 0.576 | 9000 | 3.0151 | 0.0 |
0.1118 | 0.5824 | 9100 | 3.3343 | 0.0 |
0.0385 | 0.5888 | 9200 | 2.4994 | 0.0001 |
0.0572 | 0.5952 | 9300 | 2.5381 | 0.0 |
0.0043 | 0.6016 | 9400 | 2.7233 | 0.0 |
0.0229 | 0.608 | 9500 | 1.1802 | 0.0028 |
0.1845 | 0.6144 | 9600 | 2.9195 | 0.0 |
0.0202 | 0.6208 | 9700 | 2.3263 | 0.0037 |
0.0293 | 0.6272 | 9800 | 2.4126 | 0.0004 |
0.0053 | 0.6336 | 9900 | 1.6551 | 0.0095 |
0.0044 | 0.64 | 10000 | 3.2433 | 0.0007 |
0.0024 | 0.6464 | 10100 | 0.8836 | 0.028 |
0.0276 | 0.6528 | 10200 | 2.2957 | 0.0014 |
0.0174 | 0.6592 | 10300 | 1.9640 | 0.0545 |
0.0144 | 0.6656 | 10400 | 2.1772 | 0.0 |
0.0202 | 0.672 | 10500 | 2.6542 | 0.0 |
0.0098 | 0.6784 | 10600 | 2.1121 | 0.0 |
0.002 | 0.6848 | 10700 | 3.0139 | 0.0006 |
0.0037 | 0.6912 | 10800 | 3.4679 | 0.0 |
0.0099 | 0.6976 | 10900 | 3.2861 | 0.0 |
0.0002 | 0.704 | 11000 | 3.0335 | 0.0004 |
0.0669 | 0.7104 | 11100 | 3.1367 | 0.0032 |
0.0001 | 0.7168 | 11200 | 3.2366 | 0.0011 |
0.0 | 0.7232 | 11300 | 3.2671 | 0.0009 |
0.0 | 0.7296 | 11400 | 3.1691 | 0.0016 |
0.0 | 0.736 | 11500 | 3.2155 | 0.0019 |
0.0 | 0.7424 | 11600 | 3.2458 | 0.0021 |
0.0 | 0.7488 | 11700 | 3.2528 | 0.0025 |
0.0 | 0.7552 | 11800 | 3.2522 | 0.0026 |
0.0 | 0.7616 | 11900 | 3.2589 | 0.0027 |
0.0 | 0.768 | 12000 | 3.2768 | 0.0028 |
0.0 | 0.7744 | 12100 | 3.2909 | 0.0029 |
0.0 | 0.7808 | 12200 | 3.3006 | 0.0031 |
0.0 | 0.7872 | 12300 | 3.3129 | 0.0032 |
0.0 | 0.7936 | 12400 | 3.3235 | 0.0032 |
0.0 | 0.8 | 12500 | 3.3333 | 0.0035 |
0.0 | 0.8064 | 12600 | 3.3381 | 0.0034 |
0.0 | 0.8128 | 12700 | 3.3420 | 0.0036 |
0.0 | 0.8192 | 12800 | 3.3502 | 0.0039 |
0.0 | 0.8256 | 12900 | 3.3587 | 0.004 |
0.0 | 0.832 | 13000 | 3.3636 | 0.004 |
0.0 | 0.8384 | 13100 | 3.3658 | 0.0041 |
0.0 | 0.8448 | 13200 | 3.3668 | 0.0041 |
0.0 | 0.8512 | 13300 | 3.3719 | 0.0042 |
0.0 | 0.8576 | 13400 | 3.3770 | 0.0043 |
0.0 | 0.864 | 13500 | 3.3767 | 0.0044 |
0.0 | 0.8704 | 13600 | 3.3822 | 0.0044 |
0.0 | 0.8768 | 13700 | 3.3859 | 0.0044 |
0.0 | 0.8832 | 13800 | 3.3892 | 0.0043 |
0.0 | 0.8896 | 13900 | 3.3900 | 0.0043 |
0.0 | 0.896 | 14000 | 3.3961 | 0.0043 |
0.0 | 0.9024 | 14100 | 3.3977 | 0.0043 |
0.0 | 0.9088 | 14200 | 3.4000 | 0.0043 |
0.0 | 0.9152 | 14300 | 3.4007 | 0.0044 |
0.0 | 0.9216 | 14400 | 3.4026 | 0.0044 |
0.0 | 0.928 | 14500 | 3.4045 | 0.0046 |
0.0 | 0.9344 | 14600 | 3.4065 | 0.0047 |
0.0 | 0.9408 | 14700 | 3.4088 | 0.0047 |
0.0 | 0.9472 | 14800 | 3.4098 | 0.0047 |
0.0 | 0.9536 | 14900 | 3.4092 | 0.0047 |
0.0 | 0.96 | 15000 | 3.4101 | 0.0047 |
0.0 | 0.9664 | 15100 | 3.4103 | 0.0047 |
0.0 | 0.9728 | 15200 | 3.4107 | 0.0047 |
0.0 | 0.9792 | 15300 | 3.4104 | 0.0047 |
0.0 | 0.9856 | 15400 | 3.4107 | 0.0047 |
0.0 | 0.992 | 15500 | 3.4107 | 0.0047 |
0.0 | 0.9984 | 15600 | 3.4107 | 0.0047 |
Framework versions
- Transformers 4.46.0
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support