v1_5_mistral_lora32 / README.md
mtzig's picture
Model save
1ec5a2c verified
metadata
library_name: peft
base_model: peiyi9979/math-shepherd-mistral-7b-prm
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: v1_5_mistral_lora32
    results: []

v1_5_mistral_lora32

This model is a fine-tuned version of peiyi9979/math-shepherd-mistral-7b-prm on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3153
  • Accuracy: 0.8614
  • Precision: 0.7273
  • Recall: 0.7547
  • F1: 0.7407

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 765837
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 0 0 0.5958 0.7376 0.5 0.0660 0.1167
0.6819 0.0575 20 0.5694 0.7450 0.6154 0.0755 0.1345
0.4789 0.1149 40 0.4776 0.7550 0.5263 0.6604 0.5858
0.4108 0.1724 60 0.4043 0.8045 0.6286 0.6226 0.6256
0.3486 0.2299 80 0.3752 0.8366 0.6961 0.6698 0.6827
0.2936 0.2874 100 0.3650 0.8465 0.7115 0.6981 0.7048
0.3788 0.3448 120 0.3579 0.8465 0.6864 0.7642 0.7232
0.3918 0.4023 140 0.3483 0.8564 0.7449 0.6887 0.7157
0.3386 0.4598 160 0.3409 0.8614 0.7193 0.7736 0.7455
0.2864 0.5172 180 0.3257 0.8663 0.75 0.7358 0.7429
0.2581 0.5747 200 0.3223 0.8663 0.7407 0.7547 0.7477
0.3373 0.6322 220 0.3174 0.8663 0.75 0.7358 0.7429
0.3006 0.6897 240 0.3172 0.8564 0.7222 0.7358 0.7290
0.3157 0.7471 260 0.3143 0.8639 0.7339 0.7547 0.7442
0.291 0.8046 280 0.3137 0.8639 0.7339 0.7547 0.7442
0.2578 0.8621 300 0.3168 0.8639 0.7339 0.7547 0.7442
0.3223 0.9195 320 0.3157 0.8614 0.7273 0.7547 0.7407
0.3448 0.9770 340 0.3153 0.8614 0.7273 0.7547 0.7407

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3