v1_mistral_lora
This model is a fine-tuned version of peiyi9979/math-shepherd-mistral-7b-prm on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2947
- Accuracy: 0.8899
- Precision: 0.8933
- Recall: 0.7910
- F1: 0.8391
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 0 | 0 | 0.6321 | 0.6480 | 0.5125 | 0.6119 | 0.5578 |
0.6598 | 0.0153 | 20 | 0.6284 | 0.6552 | 0.5221 | 0.5871 | 0.5527 |
0.6948 | 0.0306 | 40 | 0.6222 | 0.6787 | 0.5742 | 0.4428 | 0.5 |
0.6394 | 0.0459 | 60 | 0.6187 | 0.6877 | 0.6228 | 0.3532 | 0.4508 |
0.6466 | 0.0612 | 80 | 0.5946 | 0.7148 | 0.6257 | 0.5323 | 0.5753 |
0.5551 | 0.0765 | 100 | 0.5566 | 0.7256 | 0.6140 | 0.6567 | 0.6346 |
0.5631 | 0.0918 | 120 | 0.4903 | 0.7924 | 0.75 | 0.6418 | 0.6917 |
0.5009 | 0.1072 | 140 | 0.4552 | 0.7978 | 0.7432 | 0.6766 | 0.7083 |
0.4532 | 0.1225 | 160 | 0.4340 | 0.8267 | 0.8344 | 0.6517 | 0.7318 |
0.3813 | 0.1378 | 180 | 0.4414 | 0.8285 | 0.8630 | 0.6269 | 0.7262 |
0.3897 | 0.1531 | 200 | 0.4202 | 0.8394 | 0.8784 | 0.6468 | 0.7450 |
0.427 | 0.1684 | 220 | 0.4066 | 0.8430 | 0.8654 | 0.6716 | 0.7563 |
0.346 | 0.1837 | 240 | 0.4156 | 0.8339 | 0.7685 | 0.7761 | 0.7723 |
0.3623 | 0.1990 | 260 | 0.4000 | 0.8502 | 0.8734 | 0.6866 | 0.7688 |
0.3446 | 0.2143 | 280 | 0.3941 | 0.8520 | 0.8650 | 0.7015 | 0.7747 |
0.2533 | 0.2296 | 300 | 0.3808 | 0.8556 | 0.8954 | 0.6816 | 0.7740 |
0.3451 | 0.2449 | 320 | 0.3897 | 0.8357 | 0.7895 | 0.7463 | 0.7673 |
0.3667 | 0.2602 | 340 | 0.3895 | 0.8375 | 0.7761 | 0.7761 | 0.7761 |
0.3378 | 0.2755 | 360 | 0.3691 | 0.8592 | 0.8773 | 0.7114 | 0.7857 |
0.3216 | 0.2909 | 380 | 0.3751 | 0.8394 | 0.7947 | 0.7512 | 0.7724 |
0.3109 | 0.3062 | 400 | 0.3736 | 0.8538 | 0.8093 | 0.7811 | 0.7949 |
0.2893 | 0.3215 | 420 | 0.3466 | 0.8664 | 0.8802 | 0.7313 | 0.7989 |
0.3635 | 0.3368 | 440 | 0.3490 | 0.8610 | 0.8523 | 0.7463 | 0.7958 |
0.3582 | 0.3521 | 460 | 0.3370 | 0.8718 | 0.8824 | 0.7463 | 0.8086 |
0.3879 | 0.3674 | 480 | 0.3521 | 0.8556 | 0.7980 | 0.8060 | 0.8020 |
0.3741 | 0.3827 | 500 | 0.3298 | 0.8682 | 0.8810 | 0.7363 | 0.8022 |
0.3291 | 0.3980 | 520 | 0.3347 | 0.8628 | 0.8743 | 0.7264 | 0.7935 |
0.3697 | 0.4133 | 540 | 0.3236 | 0.8682 | 0.8636 | 0.7562 | 0.8064 |
0.3143 | 0.4286 | 560 | 0.3294 | 0.8628 | 0.8571 | 0.7463 | 0.7979 |
0.2442 | 0.4439 | 580 | 0.3167 | 0.8700 | 0.8909 | 0.7313 | 0.8033 |
0.361 | 0.4592 | 600 | 0.3247 | 0.8664 | 0.8360 | 0.7861 | 0.8103 |
0.3877 | 0.4746 | 620 | 0.3325 | 0.8700 | 0.8342 | 0.8010 | 0.8173 |
0.2342 | 0.4899 | 640 | 0.3178 | 0.8736 | 0.8659 | 0.7711 | 0.8158 |
0.2483 | 0.5052 | 660 | 0.3146 | 0.8718 | 0.8963 | 0.7313 | 0.8055 |
0.2841 | 0.5205 | 680 | 0.3226 | 0.8718 | 0.9167 | 0.7114 | 0.8011 |
0.3065 | 0.5358 | 700 | 0.3122 | 0.8845 | 0.9363 | 0.7313 | 0.8212 |
0.2231 | 0.5511 | 720 | 0.3075 | 0.8809 | 0.8689 | 0.7910 | 0.8281 |
0.2701 | 0.5664 | 740 | 0.3041 | 0.8809 | 0.8814 | 0.7761 | 0.8254 |
0.263 | 0.5817 | 760 | 0.3054 | 0.8773 | 0.8674 | 0.7811 | 0.8220 |
0.3769 | 0.5970 | 780 | 0.3036 | 0.8755 | 0.8708 | 0.7711 | 0.8179 |
0.184 | 0.6123 | 800 | 0.3055 | 0.8755 | 0.8511 | 0.7960 | 0.8226 |
0.3339 | 0.6276 | 820 | 0.3079 | 0.8773 | 0.8482 | 0.8060 | 0.8265 |
0.2078 | 0.6429 | 840 | 0.3000 | 0.8827 | 0.8736 | 0.7910 | 0.8303 |
0.3542 | 0.6582 | 860 | 0.3014 | 0.8827 | 0.8778 | 0.7861 | 0.8294 |
0.2316 | 0.6736 | 880 | 0.3074 | 0.8755 | 0.8587 | 0.7861 | 0.8208 |
0.2983 | 0.6889 | 900 | 0.3038 | 0.8809 | 0.8771 | 0.7811 | 0.8263 |
0.3039 | 0.7042 | 920 | 0.3024 | 0.8845 | 0.8870 | 0.7811 | 0.8307 |
0.311 | 0.7195 | 940 | 0.3016 | 0.8827 | 0.8820 | 0.7811 | 0.8285 |
0.406 | 0.7348 | 960 | 0.3040 | 0.8827 | 0.8617 | 0.8060 | 0.8329 |
0.2306 | 0.7501 | 980 | 0.2975 | 0.8863 | 0.9059 | 0.7662 | 0.8302 |
0.3494 | 0.7654 | 1000 | 0.3009 | 0.8863 | 0.875 | 0.8010 | 0.8364 |
0.3237 | 0.7807 | 1020 | 0.3034 | 0.8899 | 0.8723 | 0.8159 | 0.8432 |
0.4034 | 0.7960 | 1040 | 0.2988 | 0.8899 | 0.8977 | 0.7861 | 0.8382 |
0.2682 | 0.8113 | 1060 | 0.3001 | 0.8845 | 0.8663 | 0.8060 | 0.8351 |
0.2921 | 0.8266 | 1080 | 0.2982 | 0.8845 | 0.8785 | 0.7910 | 0.8325 |
0.3732 | 0.8419 | 1100 | 0.3003 | 0.8791 | 0.8564 | 0.8010 | 0.8278 |
0.324 | 0.8573 | 1120 | 0.2997 | 0.8845 | 0.8743 | 0.7960 | 0.8333 |
0.3607 | 0.8726 | 1140 | 0.2987 | 0.8827 | 0.8736 | 0.7910 | 0.8303 |
0.2201 | 0.8879 | 1160 | 0.2960 | 0.8881 | 0.8883 | 0.7910 | 0.8368 |
0.2767 | 0.9032 | 1180 | 0.2949 | 0.8899 | 0.8933 | 0.7910 | 0.8391 |
0.2563 | 0.9185 | 1200 | 0.2939 | 0.8899 | 0.8933 | 0.7910 | 0.8391 |
0.2681 | 0.9338 | 1220 | 0.2956 | 0.8899 | 0.8933 | 0.7910 | 0.8391 |
0.3409 | 0.9491 | 1240 | 0.2950 | 0.8881 | 0.8883 | 0.7910 | 0.8368 |
0.3316 | 0.9644 | 1260 | 0.2939 | 0.8899 | 0.8933 | 0.7910 | 0.8391 |
0.1957 | 0.9797 | 1280 | 0.2946 | 0.8899 | 0.8933 | 0.7910 | 0.8391 |
0.2439 | 0.9950 | 1300 | 0.2947 | 0.8899 | 0.8933 | 0.7910 | 0.8391 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 10
Model tree for mtzig/v1_mistral_lora
Base model
peiyi9979/math-shepherd-mistral-7b-prm