roberta-finetuned-ner-nergrit
This model is a fine-tuned version of FacebookAI/xlm-roberta-large on the nergrit dataset. It achieves the following results on the evaluation set:
- Loss: 0.1117
- Precision: 0.9200
- Recall: 0.9289
- F1: 0.9244
- Accuracy: 0.9771
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.9994 | 392 | 0.1149 | 0.9224 | 0.9185 | 0.9204 | 0.9760 |
0.1999 | 1.9987 | 784 | 0.1055 | 0.9253 | 0.9222 | 0.9238 | 0.9772 |
0.0833 | 2.9981 | 1176 | 0.1117 | 0.9200 | 0.9289 | 0.9244 | 0.9771 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model's library.
Model tree for mufathurrohman/roberta-finetuned-ner-nergrit
Base model
FacebookAI/xlm-roberta-largeEvaluation results
- Precision on nergritvalidation set self-reported0.920
- Recall on nergritvalidation set self-reported0.929
- F1 on nergritvalidation set self-reported0.924
- Accuracy on nergritvalidation set self-reported0.977