fine-tuned-DatasetQAS-TYDI-QA-ID-with-indobert-large-p2-with-ITTL-with-freeze-LR-1e-05
This model is a fine-tuned version of indobenchmark/indobert-large-p2 on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2003
- Exact Match: 60.2113
- F1: 73.9948
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Exact Match |
F1 |
6.2316 |
0.5 |
19 |
3.5321 |
11.9718 |
21.8197 |
6.2316 |
0.99 |
38 |
2.6566 |
19.1901 |
31.9985 |
3.5132 |
1.5 |
57 |
2.1442 |
27.2887 |
40.7031 |
3.5132 |
1.99 |
76 |
1.6755 |
41.5493 |
53.9850 |
3.5132 |
2.5 |
95 |
1.4228 |
48.2394 |
61.2829 |
1.845 |
2.99 |
114 |
1.2882 |
52.8169 |
66.2197 |
1.845 |
3.5 |
133 |
1.2352 |
54.7535 |
68.3725 |
1.2542 |
3.99 |
152 |
1.2033 |
56.6901 |
70.5019 |
1.2542 |
4.5 |
171 |
1.2117 |
57.9225 |
72.0740 |
1.2542 |
4.99 |
190 |
1.1748 |
58.4507 |
71.9264 |
0.9877 |
5.5 |
209 |
1.1763 |
58.8028 |
72.2772 |
0.9877 |
5.99 |
228 |
1.1827 |
59.5070 |
73.5652 |
0.9877 |
6.5 |
247 |
1.1789 |
59.8592 |
73.2748 |
0.8293 |
6.99 |
266 |
1.1835 |
60.0352 |
73.4695 |
0.8293 |
7.5 |
285 |
1.1669 |
59.8592 |
73.7145 |
0.7663 |
7.99 |
304 |
1.1912 |
60.3873 |
74.3001 |
0.7663 |
8.5 |
323 |
1.1828 |
60.2113 |
74.1533 |
0.7663 |
8.99 |
342 |
1.2046 |
60.3873 |
74.0424 |
0.7068 |
9.5 |
361 |
1.2003 |
60.2113 |
73.9948 |
Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.2.0
- Tokenizers 0.13.2