deeplabv3-mobilevit-small-corm
This model is a fine-tuned version of apple/deeplabv3-mobilevit-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3683
- Mean Iou: 0.5100
- Mean Accuracy: 0.8339
- Overall Accuracy: 0.8317
- Accuracy Background: nan
- Accuracy Corm: 0.8057
- Accuracy Damage: 0.8621
- Iou Background: 0.0
- Iou Corm: 0.7541
- Iou Damage: 0.7759
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Corm | Accuracy Damage | Iou Background | Iou Corm | Iou Damage |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1.0605 | 2.2222 | 20 | 1.0716 | 0.2673 | 0.5409 | 0.5579 | nan | 0.7620 | 0.3198 | 0.0 | 0.5135 | 0.2884 |
1.0126 | 4.4444 | 40 | 1.0116 | 0.2753 | 0.5032 | 0.5099 | nan | 0.5897 | 0.4167 | 0.0 | 0.4581 | 0.3679 |
0.9674 | 6.6667 | 60 | 0.9641 | 0.2948 | 0.5118 | 0.5104 | nan | 0.4937 | 0.5298 | 0.0 | 0.4295 | 0.4548 |
0.9281 | 8.8889 | 80 | 0.9208 | 0.3102 | 0.5386 | 0.5337 | nan | 0.4750 | 0.6022 | 0.0 | 0.4233 | 0.5073 |
0.8893 | 11.1111 | 100 | 0.8746 | 0.3071 | 0.5235 | 0.5191 | nan | 0.4660 | 0.5811 | 0.0 | 0.4201 | 0.5013 |
0.8539 | 13.3333 | 120 | 0.8368 | 0.3205 | 0.5450 | 0.5394 | nan | 0.4718 | 0.6182 | 0.0 | 0.4335 | 0.5279 |
0.8164 | 15.5556 | 140 | 0.7937 | 0.3227 | 0.5465 | 0.5399 | nan | 0.4613 | 0.6316 | 0.0 | 0.4274 | 0.5407 |
0.7956 | 17.7778 | 160 | 0.7577 | 0.3383 | 0.5686 | 0.5634 | nan | 0.5010 | 0.6361 | 0.0 | 0.4620 | 0.5528 |
0.7716 | 20.0 | 180 | 0.7257 | 0.3475 | 0.5847 | 0.5779 | nan | 0.4960 | 0.6735 | 0.0 | 0.4636 | 0.5789 |
0.7278 | 22.2222 | 200 | 0.6851 | 0.3567 | 0.5920 | 0.5902 | nan | 0.5683 | 0.6157 | 0.0 | 0.5155 | 0.5546 |
0.6895 | 24.4444 | 220 | 0.6568 | 0.3787 | 0.6295 | 0.6261 | nan | 0.5853 | 0.6738 | 0.0 | 0.5408 | 0.5952 |
0.6668 | 26.6667 | 240 | 0.6265 | 0.3920 | 0.6505 | 0.6476 | nan | 0.6125 | 0.6885 | 0.0 | 0.5661 | 0.6100 |
0.6513 | 28.8889 | 260 | 0.6051 | 0.4073 | 0.6788 | 0.6769 | nan | 0.6542 | 0.7033 | 0.0 | 0.5976 | 0.6242 |
0.6197 | 31.1111 | 280 | 0.5823 | 0.4129 | 0.6843 | 0.6828 | nan | 0.6654 | 0.7032 | 0.0 | 0.6085 | 0.6301 |
0.6191 | 33.3333 | 300 | 0.5574 | 0.4217 | 0.7003 | 0.6976 | nan | 0.6657 | 0.7349 | 0.0 | 0.6136 | 0.6514 |
0.5747 | 35.5556 | 320 | 0.5463 | 0.4354 | 0.7230 | 0.7203 | nan | 0.6872 | 0.7588 | 0.0 | 0.6342 | 0.6719 |
0.567 | 37.7778 | 340 | 0.5256 | 0.4361 | 0.7293 | 0.7248 | nan | 0.6707 | 0.7878 | 0.0 | 0.6269 | 0.6813 |
0.5657 | 40.0 | 360 | 0.5091 | 0.4410 | 0.7344 | 0.7304 | nan | 0.6828 | 0.7860 | 0.0 | 0.6367 | 0.6862 |
0.5355 | 42.2222 | 380 | 0.4998 | 0.4493 | 0.7531 | 0.7483 | nan | 0.6915 | 0.8146 | 0.0 | 0.6478 | 0.7001 |
0.529 | 44.4444 | 400 | 0.4865 | 0.4547 | 0.7564 | 0.7528 | nan | 0.7096 | 0.8032 | 0.0 | 0.6606 | 0.7033 |
0.5019 | 46.6667 | 420 | 0.4756 | 0.4586 | 0.7666 | 0.7622 | nan | 0.7092 | 0.8241 | 0.0 | 0.6644 | 0.7114 |
0.4869 | 48.8889 | 440 | 0.4659 | 0.4656 | 0.7748 | 0.7714 | nan | 0.7305 | 0.8191 | 0.0 | 0.6799 | 0.7168 |
0.481 | 51.1111 | 460 | 0.4542 | 0.4646 | 0.7736 | 0.7696 | nan | 0.7221 | 0.8251 | 0.0 | 0.6762 | 0.7177 |
0.4795 | 53.3333 | 480 | 0.4441 | 0.4690 | 0.7790 | 0.7753 | nan | 0.7304 | 0.8276 | 0.0 | 0.6838 | 0.7232 |
0.4626 | 55.5556 | 500 | 0.4379 | 0.4774 | 0.7910 | 0.7880 | nan | 0.7512 | 0.8309 | 0.0 | 0.7003 | 0.7319 |
0.4679 | 57.7778 | 520 | 0.4296 | 0.4791 | 0.7941 | 0.7906 | nan | 0.7480 | 0.8403 | 0.0 | 0.7007 | 0.7366 |
0.478 | 60.0 | 540 | 0.4198 | 0.4821 | 0.7961 | 0.7931 | nan | 0.7563 | 0.8359 | 0.0 | 0.7066 | 0.7396 |
0.4562 | 62.2222 | 560 | 0.4142 | 0.4803 | 0.7976 | 0.7931 | nan | 0.7394 | 0.8558 | 0.0 | 0.6986 | 0.7424 |
0.4309 | 64.4444 | 580 | 0.4111 | 0.4857 | 0.8063 | 0.8021 | nan | 0.7513 | 0.8614 | 0.0 | 0.7090 | 0.7481 |
0.4239 | 66.6667 | 600 | 0.4040 | 0.4918 | 0.8105 | 0.8075 | nan | 0.7708 | 0.8503 | 0.0 | 0.7224 | 0.7529 |
0.4436 | 68.8889 | 620 | 0.3981 | 0.4922 | 0.8121 | 0.8086 | nan | 0.7669 | 0.8573 | 0.0 | 0.7220 | 0.7547 |
0.4253 | 71.1111 | 640 | 0.3924 | 0.4915 | 0.8101 | 0.8065 | nan | 0.7628 | 0.8574 | 0.0 | 0.7192 | 0.7553 |
0.4054 | 73.3333 | 660 | 0.3926 | 0.4991 | 0.8197 | 0.8172 | nan | 0.7869 | 0.8526 | 0.0 | 0.7361 | 0.7611 |
0.4368 | 75.5556 | 680 | 0.3861 | 0.5028 | 0.8241 | 0.8220 | nan | 0.7970 | 0.8511 | 0.0 | 0.7437 | 0.7648 |
0.4 | 77.7778 | 700 | 0.3836 | 0.5009 | 0.8245 | 0.8210 | nan | 0.7787 | 0.8704 | 0.0 | 0.7352 | 0.7675 |
0.3801 | 80.0 | 720 | 0.3815 | 0.4985 | 0.8231 | 0.8188 | nan | 0.7677 | 0.8784 | 0.0 | 0.7290 | 0.7664 |
0.3929 | 82.2222 | 740 | 0.3788 | 0.5048 | 0.8276 | 0.8249 | nan | 0.7935 | 0.8616 | 0.0 | 0.7447 | 0.7698 |
0.3923 | 84.4444 | 760 | 0.3752 | 0.5038 | 0.8283 | 0.8249 | nan | 0.7851 | 0.8715 | 0.0 | 0.7406 | 0.7708 |
0.412 | 86.6667 | 780 | 0.3735 | 0.5029 | 0.8286 | 0.8247 | nan | 0.7775 | 0.8798 | 0.0 | 0.7370 | 0.7718 |
0.3757 | 88.8889 | 800 | 0.3731 | 0.5082 | 0.8335 | 0.8306 | nan | 0.7962 | 0.8708 | 0.0 | 0.7492 | 0.7753 |
0.3863 | 91.1111 | 820 | 0.3729 | 0.5063 | 0.8336 | 0.8299 | nan | 0.7854 | 0.8819 | 0.0 | 0.7437 | 0.7751 |
0.3833 | 93.3333 | 840 | 0.3709 | 0.5044 | 0.8310 | 0.8269 | nan | 0.7777 | 0.8843 | 0.0 | 0.7391 | 0.7741 |
0.378 | 95.5556 | 860 | 0.3700 | 0.5073 | 0.8330 | 0.8297 | nan | 0.7896 | 0.8765 | 0.0 | 0.7462 | 0.7758 |
0.3942 | 97.7778 | 880 | 0.3679 | 0.5070 | 0.8316 | 0.8284 | nan | 0.7900 | 0.8732 | 0.0 | 0.7457 | 0.7752 |
0.3877 | 100.0 | 900 | 0.3683 | 0.5100 | 0.8339 | 0.8317 | nan | 0.8057 | 0.8621 | 0.0 | 0.7541 | 0.7759 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 84
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for mujerry/deeplabv3-mobilevit-small-corm
Base model
apple/deeplabv3-mobilevit-small