deeplabv3-mobilevit-small-corm

This model is a fine-tuned version of apple/deeplabv3-mobilevit-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3683
  • Mean Iou: 0.5100
  • Mean Accuracy: 0.8339
  • Overall Accuracy: 0.8317
  • Accuracy Background: nan
  • Accuracy Corm: 0.8057
  • Accuracy Damage: 0.8621
  • Iou Background: 0.0
  • Iou Corm: 0.7541
  • Iou Damage: 0.7759

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Corm Accuracy Damage Iou Background Iou Corm Iou Damage
1.0605 2.2222 20 1.0716 0.2673 0.5409 0.5579 nan 0.7620 0.3198 0.0 0.5135 0.2884
1.0126 4.4444 40 1.0116 0.2753 0.5032 0.5099 nan 0.5897 0.4167 0.0 0.4581 0.3679
0.9674 6.6667 60 0.9641 0.2948 0.5118 0.5104 nan 0.4937 0.5298 0.0 0.4295 0.4548
0.9281 8.8889 80 0.9208 0.3102 0.5386 0.5337 nan 0.4750 0.6022 0.0 0.4233 0.5073
0.8893 11.1111 100 0.8746 0.3071 0.5235 0.5191 nan 0.4660 0.5811 0.0 0.4201 0.5013
0.8539 13.3333 120 0.8368 0.3205 0.5450 0.5394 nan 0.4718 0.6182 0.0 0.4335 0.5279
0.8164 15.5556 140 0.7937 0.3227 0.5465 0.5399 nan 0.4613 0.6316 0.0 0.4274 0.5407
0.7956 17.7778 160 0.7577 0.3383 0.5686 0.5634 nan 0.5010 0.6361 0.0 0.4620 0.5528
0.7716 20.0 180 0.7257 0.3475 0.5847 0.5779 nan 0.4960 0.6735 0.0 0.4636 0.5789
0.7278 22.2222 200 0.6851 0.3567 0.5920 0.5902 nan 0.5683 0.6157 0.0 0.5155 0.5546
0.6895 24.4444 220 0.6568 0.3787 0.6295 0.6261 nan 0.5853 0.6738 0.0 0.5408 0.5952
0.6668 26.6667 240 0.6265 0.3920 0.6505 0.6476 nan 0.6125 0.6885 0.0 0.5661 0.6100
0.6513 28.8889 260 0.6051 0.4073 0.6788 0.6769 nan 0.6542 0.7033 0.0 0.5976 0.6242
0.6197 31.1111 280 0.5823 0.4129 0.6843 0.6828 nan 0.6654 0.7032 0.0 0.6085 0.6301
0.6191 33.3333 300 0.5574 0.4217 0.7003 0.6976 nan 0.6657 0.7349 0.0 0.6136 0.6514
0.5747 35.5556 320 0.5463 0.4354 0.7230 0.7203 nan 0.6872 0.7588 0.0 0.6342 0.6719
0.567 37.7778 340 0.5256 0.4361 0.7293 0.7248 nan 0.6707 0.7878 0.0 0.6269 0.6813
0.5657 40.0 360 0.5091 0.4410 0.7344 0.7304 nan 0.6828 0.7860 0.0 0.6367 0.6862
0.5355 42.2222 380 0.4998 0.4493 0.7531 0.7483 nan 0.6915 0.8146 0.0 0.6478 0.7001
0.529 44.4444 400 0.4865 0.4547 0.7564 0.7528 nan 0.7096 0.8032 0.0 0.6606 0.7033
0.5019 46.6667 420 0.4756 0.4586 0.7666 0.7622 nan 0.7092 0.8241 0.0 0.6644 0.7114
0.4869 48.8889 440 0.4659 0.4656 0.7748 0.7714 nan 0.7305 0.8191 0.0 0.6799 0.7168
0.481 51.1111 460 0.4542 0.4646 0.7736 0.7696 nan 0.7221 0.8251 0.0 0.6762 0.7177
0.4795 53.3333 480 0.4441 0.4690 0.7790 0.7753 nan 0.7304 0.8276 0.0 0.6838 0.7232
0.4626 55.5556 500 0.4379 0.4774 0.7910 0.7880 nan 0.7512 0.8309 0.0 0.7003 0.7319
0.4679 57.7778 520 0.4296 0.4791 0.7941 0.7906 nan 0.7480 0.8403 0.0 0.7007 0.7366
0.478 60.0 540 0.4198 0.4821 0.7961 0.7931 nan 0.7563 0.8359 0.0 0.7066 0.7396
0.4562 62.2222 560 0.4142 0.4803 0.7976 0.7931 nan 0.7394 0.8558 0.0 0.6986 0.7424
0.4309 64.4444 580 0.4111 0.4857 0.8063 0.8021 nan 0.7513 0.8614 0.0 0.7090 0.7481
0.4239 66.6667 600 0.4040 0.4918 0.8105 0.8075 nan 0.7708 0.8503 0.0 0.7224 0.7529
0.4436 68.8889 620 0.3981 0.4922 0.8121 0.8086 nan 0.7669 0.8573 0.0 0.7220 0.7547
0.4253 71.1111 640 0.3924 0.4915 0.8101 0.8065 nan 0.7628 0.8574 0.0 0.7192 0.7553
0.4054 73.3333 660 0.3926 0.4991 0.8197 0.8172 nan 0.7869 0.8526 0.0 0.7361 0.7611
0.4368 75.5556 680 0.3861 0.5028 0.8241 0.8220 nan 0.7970 0.8511 0.0 0.7437 0.7648
0.4 77.7778 700 0.3836 0.5009 0.8245 0.8210 nan 0.7787 0.8704 0.0 0.7352 0.7675
0.3801 80.0 720 0.3815 0.4985 0.8231 0.8188 nan 0.7677 0.8784 0.0 0.7290 0.7664
0.3929 82.2222 740 0.3788 0.5048 0.8276 0.8249 nan 0.7935 0.8616 0.0 0.7447 0.7698
0.3923 84.4444 760 0.3752 0.5038 0.8283 0.8249 nan 0.7851 0.8715 0.0 0.7406 0.7708
0.412 86.6667 780 0.3735 0.5029 0.8286 0.8247 nan 0.7775 0.8798 0.0 0.7370 0.7718
0.3757 88.8889 800 0.3731 0.5082 0.8335 0.8306 nan 0.7962 0.8708 0.0 0.7492 0.7753
0.3863 91.1111 820 0.3729 0.5063 0.8336 0.8299 nan 0.7854 0.8819 0.0 0.7437 0.7751
0.3833 93.3333 840 0.3709 0.5044 0.8310 0.8269 nan 0.7777 0.8843 0.0 0.7391 0.7741
0.378 95.5556 860 0.3700 0.5073 0.8330 0.8297 nan 0.7896 0.8765 0.0 0.7462 0.7758
0.3942 97.7778 880 0.3679 0.5070 0.8316 0.8284 nan 0.7900 0.8732 0.0 0.7457 0.7752
0.3877 100.0 900 0.3683 0.5100 0.8339 0.8317 nan 0.8057 0.8621 0.0 0.7541 0.7759

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
84
Safetensors
Model size
6.37M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for mujerry/deeplabv3-mobilevit-small-corm

Finetuned
(2)
this model