murodbek's picture
Update README.md
5947c17
|
raw
history blame
2.14 kB
metadata
language:
  - uz
tags:
  - transformers
  - robert
  - uzrobert
  - uzbek
  - latin
license: apache-2.0
widget:
  - text: Menga yoqdi, juda yaxshi ekan.
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: uzroberta-sentiment-analysis
    results: []

uzroberta-sentiment-analysis

This is a roBERTa-base model trained on ~23K reviews (more than 323K words) and finetuned for sentiment analysis of customer reviews. This model is built as part of author's project at the Uz-NLP 2022 Hackathon and it is suitable for Uzbek language.

Labels: LABEL_0 -> Negative;
LABEL_1 -> Positive

Model description

This model is a fine-tuned version of rifkat/uztext-3Gb-BPE-Roberta on the Uzbek App reviews for Sentiment Classification dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5718
  • Precision: 0.9113
  • Recall: 0.8869
  • F1 Score: 0.8989
  • Accuracy: 0.896

Intended uses & limitations

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1595 1.0 1125 0.4438 0.8971 0.8523 0.8741 0.872
0.1891 2.0 2250 0.4157 0.8961 0.9012 0.8987 0.894
0.1201 3.0 3375 0.5024 0.9074 0.8830 0.8950 0.892
0.0772 4.0 4500 0.5718 0.9113 0.8869 0.8989 0.896

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0+cu116
  • Datasets 2.3.2
  • Tokenizers 0.12.1