muzamil47's picture
Update README.md
a536141
|
raw
history blame
7.47 kB
---
language: ar
datasets:
- arabic_speech_corpus
- mozilla-foundation/common_voice_6_1
metrics:
- wer
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
model-index:
- name: muzamil47-wav2vec2-large-xlsr-53-arabic
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 6.1 (Arabic)
type: mozilla-foundation/common_voice_6_1
config: ar
metrics:
- name: Test WER
type: wer
value: 53.54
---
# Wav2Vec2-Large-XLSR-53-Arabic
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Arabic using the [Common Voice](https://huggingface.co/datasets/common_voice).
When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
```python
import librosa
import torch
from lang_trans.arabic import buckwalter
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
asr_model = "muzamil47/wav2vec2-large-xlsr-53-arabic-demo"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_file_to_data(file, srate=16_000):
batch = {}
speech, sampling_rate = librosa.load(file, sr=srate)
batch["speech"] = speech
batch["sampling_rate"] = sampling_rate
return batch
processor = Wav2Vec2Processor.from_pretrained(asr_model)
model = Wav2Vec2ForCTC.from_pretrained(asr_model).to(device)
def predict(data):
features = processor(data["speech"], sampling_rate=data["sampling_rate"], return_tensors="pt", padding=True)
input_values = features.input_values.to(device)
try:
attention_mask = features.attention_mask.to(device)
except:
attention_mask = None
with torch.no_grad():
predicted = torch.argmax(model(input_values, attention_mask=attention_mask).logits, dim=-1)
data["predicted"] = processor.tokenizer.decode(predicted[0])
print("predicted:", buckwalter.untrans(data["predicted"]))
return data
predict(load_file_to_data("common_voice_ar_19058307.mp3"))
```
**Output Result**:
```shell
predicted: هل يمكنني التحدث مع المسؤول هنا
```
## Evaluation
The model can be evaluated as follows on the Arabic test data of Common Voice.
```python
import torch
import torchaudio
from datasets import load_dataset
from lang_trans.arabic import buckwalter
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
asr_model = "muzamil47/wav2vec2-large-xlsr-53-arabic-demo"
dataset = load_dataset("common_voice", "ar", split="test[:10]")
resamplers = { # all three sampling rates exist in test split
48000: torchaudio.transforms.Resample(48000, 16000),
44100: torchaudio.transforms.Resample(44100, 16000),
32000: torchaudio.transforms.Resample(32000, 16000),
}
def prepare_example(example):
speech, sampling_rate = torchaudio.load(example["path"])
example["speech"] = resamplers[sampling_rate](speech).squeeze().numpy()
return example
dataset = dataset.map(prepare_example)
processor = Wav2Vec2Processor.from_pretrained(asr_model)
model = Wav2Vec2ForCTC.from_pretrained(asr_model).eval()
def predict(batch):
inputs = processor(batch["speech"], sampling_rate=16000, return_tensors="pt", padding=True)
with torch.no_grad():
predicted = torch.argmax(model(inputs.input_values).logits, dim=-1)
predicted[predicted == -100] = processor.tokenizer.pad_token_id # see fine-tuning script
batch["predicted"] = processor.tokenizer.batch_decode(predicted)
return batch
dataset = dataset.map(predict, batched=True, batch_size=1, remove_columns=["speech"])
for reference, predicted in zip(dataset["sentence"], dataset["predicted"]):
print("reference:", reference)
print("predicted:", buckwalter.untrans(predicted))
print("--")
```
**Output Results**:
```shell
reference: ما أطول عودك!
predicted: ما اطول عودك
reference: ماتت عمتي منذ سنتين.
predicted: ما تتعمتي منذو سنتين
reference: الألمانية ليست لغة سهلة.
predicted: الالمانية ليست لغة سهلة
reference: طلبت منه أن يبعث الكتاب إلينا.
predicted: طلبت منه ان يبعث الكتاب الينا
reference: .السيد إيتو رجل متعلم
predicted: السيد ايتو رجل متعلم
reference: الحمد لله.
predicted: الحمذ لللا
reference: في الوقت نفسه بدأت الرماح والسهام تقع بين الغزاة
predicted: في الوقت نفسه ابدات الرماح و السهام تقع بين الغزاء
reference: لا أريد أن أكون ثقيلَ الظِّل ، أريد أن أكون رائعًا! !
predicted: لا اريد ان اكون ثقيل الظل اريد ان اكون رائع
reference: خذ مظلة معك في حال أمطرت.
predicted: خذ مظلة معك في حال امطرت
reference: .ركب توم السيارة
predicted: ركب توم السيارة
```
The model evaluation **(WER)** on the Arabic test data of Common Voice.
```python
import re
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import set_seed, Wav2Vec2ForCTC, Wav2Vec2Processor
set_seed(42)
test_dataset = load_dataset("common_voice", "ar", split="test")
processor = Wav2Vec2Processor.from_pretrained("muzamil47/wav2vec2-large-xlsr-53-arabic-demo")
model = Wav2Vec2ForCTC.from_pretrained("muzamil47/wav2vec2-large-xlsr-53-arabic-demo")
model.to("cuda")
chars_to_ignore_regex = '[\,\؟\.\!\-\;\\:\'\"\☭\«\»\؛\—\ـ\_\،\“\%\‘\”\�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets. We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
batch["sentence"] = re.sub('[a-z]','',batch["sentence"])
batch["sentence"] = re.sub("[إأٱآا]", "ا", batch["sentence"])
noise = re.compile(""" ّ | # Tashdid
َ | # Fatha
ً | # Tanwin Fath
ُ | # Damma
ٌ | # Tanwin Damm
ِ | # Kasra
ٍ | # Tanwin Kasr
ْ | # Sukun
ـ # Tatwil/Kashida
""", re.VERBOSE)
batch["sentence"] = re.sub(noise, '', batch["sentence"])
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
wer = load_metric("wer")
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
```
**Test Result**: 53.54