|
--- |
|
language: ar |
|
datasets: |
|
- arabic_speech_corpus |
|
- mozilla-foundation/common_voice_6_1 |
|
metrics: |
|
- wer |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
license: apache-2.0 |
|
model-index: |
|
- name: muzamil47-wav2vec2-large-xlsr-53-arabic |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice 6.1 (Arabic) |
|
type: mozilla-foundation/common_voice_6_1 |
|
config: ar |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 53.54 |
|
--- |
|
|
|
# Wav2Vec2-Large-XLSR-53-Arabic |
|
|
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Arabic using the [Common Voice](https://huggingface.co/datasets/common_voice). |
|
When using this model, make sure that your speech input is sampled at 16kHz. |
|
|
|
## Usage |
|
|
|
The model can be used directly (without a language model) as follows: |
|
|
|
```python |
|
import librosa |
|
import torch |
|
from lang_trans.arabic import buckwalter |
|
|
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
asr_model = "muzamil47/wav2vec2-large-xlsr-53-arabic-demo" |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
def load_file_to_data(file, srate=16_000): |
|
batch = {} |
|
speech, sampling_rate = librosa.load(file, sr=srate) |
|
batch["speech"] = speech |
|
batch["sampling_rate"] = sampling_rate |
|
return batch |
|
|
|
|
|
processor = Wav2Vec2Processor.from_pretrained(asr_model) |
|
model = Wav2Vec2ForCTC.from_pretrained(asr_model).to(device) |
|
|
|
|
|
def predict(data): |
|
features = processor(data["speech"], sampling_rate=data["sampling_rate"], return_tensors="pt", padding=True) |
|
input_values = features.input_values.to(device) |
|
try: |
|
attention_mask = features.attention_mask.to(device) |
|
except: |
|
attention_mask = None |
|
with torch.no_grad(): |
|
predicted = torch.argmax(model(input_values, attention_mask=attention_mask).logits, dim=-1) |
|
|
|
data["predicted"] = processor.tokenizer.decode(predicted[0]) |
|
print("predicted:", buckwalter.untrans(data["predicted"])) |
|
return data |
|
|
|
predict(load_file_to_data("common_voice_ar_19058307.mp3")) |
|
``` |
|
**Output Result**: |
|
```shell |
|
predicted: هل يمكنني التحدث مع المسؤول هنا |
|
``` |
|
|
|
## Evaluation |
|
|
|
The model can be evaluated as follows on the Arabic test data of Common Voice. |
|
|
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset |
|
from lang_trans.arabic import buckwalter |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
asr_model = "muzamil47/wav2vec2-large-xlsr-53-arabic-demo" |
|
|
|
dataset = load_dataset("common_voice", "ar", split="test[:10]") |
|
|
|
resamplers = { # all three sampling rates exist in test split |
|
48000: torchaudio.transforms.Resample(48000, 16000), |
|
44100: torchaudio.transforms.Resample(44100, 16000), |
|
32000: torchaudio.transforms.Resample(32000, 16000), |
|
} |
|
|
|
def prepare_example(example): |
|
speech, sampling_rate = torchaudio.load(example["path"]) |
|
example["speech"] = resamplers[sampling_rate](speech).squeeze().numpy() |
|
return example |
|
|
|
dataset = dataset.map(prepare_example) |
|
processor = Wav2Vec2Processor.from_pretrained(asr_model) |
|
model = Wav2Vec2ForCTC.from_pretrained(asr_model).eval() |
|
|
|
def predict(batch): |
|
inputs = processor(batch["speech"], sampling_rate=16000, return_tensors="pt", padding=True) |
|
with torch.no_grad(): |
|
predicted = torch.argmax(model(inputs.input_values).logits, dim=-1) |
|
predicted[predicted == -100] = processor.tokenizer.pad_token_id # see fine-tuning script |
|
batch["predicted"] = processor.tokenizer.batch_decode(predicted) |
|
return batch |
|
|
|
dataset = dataset.map(predict, batched=True, batch_size=1, remove_columns=["speech"]) |
|
|
|
for reference, predicted in zip(dataset["sentence"], dataset["predicted"]): |
|
print("reference:", reference) |
|
print("predicted:", buckwalter.untrans(predicted)) |
|
print("--") |
|
|
|
``` |
|
**Output Results**: |
|
```shell |
|
reference: ما أطول عودك! |
|
predicted: ما اطول عودك |
|
|
|
reference: ماتت عمتي منذ سنتين. |
|
predicted: ما تتعمتي منذو سنتين |
|
|
|
reference: الألمانية ليست لغة سهلة. |
|
predicted: الالمانية ليست لغة سهلة |
|
|
|
reference: طلبت منه أن يبعث الكتاب إلينا. |
|
predicted: طلبت منه ان يبعث الكتاب الينا |
|
|
|
reference: .السيد إيتو رجل متعلم |
|
predicted: السيد ايتو رجل متعلم |
|
|
|
reference: الحمد لله. |
|
predicted: الحمذ لللا |
|
|
|
reference: في الوقت نفسه بدأت الرماح والسهام تقع بين الغزاة |
|
predicted: في الوقت نفسه ابدات الرماح و السهام تقع بين الغزاء |
|
|
|
reference: لا أريد أن أكون ثقيلَ الظِّل ، أريد أن أكون رائعًا! ! |
|
predicted: لا اريد ان اكون ثقيل الظل اريد ان اكون رائع |
|
|
|
reference: خذ مظلة معك في حال أمطرت. |
|
predicted: خذ مظلة معك في حال امطرت |
|
|
|
reference: .ركب توم السيارة |
|
predicted: ركب توم السيارة |
|
``` |
|
|
|
The model evaluation **(WER)** on the Arabic test data of Common Voice. |
|
|
|
```python |
|
import re |
|
|
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset, load_metric |
|
from transformers import set_seed, Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
set_seed(42) |
|
|
|
test_dataset = load_dataset("common_voice", "ar", split="test") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("muzamil47/wav2vec2-large-xlsr-53-arabic-demo") |
|
model = Wav2Vec2ForCTC.from_pretrained("muzamil47/wav2vec2-large-xlsr-53-arabic-demo") |
|
model.to("cuda") |
|
|
|
chars_to_ignore_regex = '[\,\؟\.\!\-\;\\:\'\"\☭\«\»\؛\—\ـ\_\،\“\%\‘\”\�]' |
|
|
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
|
|
# Preprocessing the datasets. We need to read the aduio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() |
|
batch["sentence"] = re.sub('[a-z]','',batch["sentence"]) |
|
batch["sentence"] = re.sub("[إأٱآا]", "ا", batch["sentence"]) |
|
noise = re.compile(""" ّ | # Tashdid |
|
َ | # Fatha |
|
ً | # Tanwin Fath |
|
ُ | # Damma |
|
ٌ | # Tanwin Damm |
|
ِ | # Kasra |
|
ٍ | # Tanwin Kasr |
|
ْ | # Sukun |
|
ـ # Tatwil/Kashida |
|
""", re.VERBOSE) |
|
batch["sentence"] = re.sub(noise, '', batch["sentence"]) |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
|
|
|
|
def evaluate(batch): |
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["pred_strings"] = processor.batch_decode(pred_ids) |
|
return batch |
|
|
|
result = test_dataset.map(evaluate, batched=True, batch_size=8) |
|
|
|
wer = load_metric("wer") |
|
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) |
|
|
|
``` |
|
|
|
**Test Result**: 53.54 |
|
|