mwitiderrick's picture
Update README.md
00ec376
|
raw
history blame
2.74 kB
metadata
base_model: mwitiderrick/open_llama_3b_code_instruct_0.1
datasets:
  - mwitiderrick/AlpacaCode
inference: true
model_type: llama
prompt_template: |
  <s>[INST] 
  {prompt}
  [/INST]
created_by: mwitiderrick
tags:
  - transformers
license: apache-2.0
language:
  - en
library_name: transformers
pipeline_tag: text-generation
model-index:
  - name: mwitiderrick/open_llama_3b_instruct_v_0.2
    results:
      - task:
          type: text-generation
        dataset:
          name: hellaswag
          type: hellaswag
        metrics:
          - name: hellaswag(0-Shot)
            type: hellaswag (0-Shot)
            value: 0.66
      - task:
          type: text-generation
        dataset:
          name: winogrande
          type: winogrande
        metrics:
          - name: winogrande(0-Shot)
            type: winogrande (0-Shot)
            value: 0.6322
      - task:
          type: text-generation
        dataset:
          name: arc_challenge
          type: arc_challenge
        metrics:
          - name: arc_challenge(0-Shot)
            type: arc_challenge (0-Shot)
            value: 0
        source:
          name: open_llama_3b_instruct_v_0.2 model card
          url: https://huggingface.co/mwitiderrick/open_llama_3b_instruct_v_0.2

OpenLLaMA Glaive: An Open Reproduction of LLaMA

This is an OpenLlama model Code Instruct that has been fine-tuned on 1 epoch of the Glaive Assistsnt dataset.

Prompt Template

<s>[INST] {{ user_msg }} [/INST]

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM,pipeline

tokenizer = AutoTokenizer.from_pretrained("mwitiderrick/open_llama_3b_glaive_assistant_v0.1")
model = AutoModelForCausalLM.from_pretrained("mwitiderrick/open_llama_3b_glaive_assistant_v0.1")
query = "Write a quick sort algorithm in Python"
text_gen = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
output = text_gen(f"<s>[INST]{query}[/INST]")
print(output[0]['generated_text'])
"""
<s>[INST]Write a quick sort algorithm in Python[/INST]

Quick sort is a divide and conquer algorithm that sorts an array in-place.
It works by repeatedly dividing the array into two sub-arrays, sorting
them, and then merging them back together.

Here's a Python implementation of the quick sort algorithm:

def quick_sort(arr):
    if len(arr) <= 1:
        return arr
    else:
        pivot = arr[len(arr) // 2]
        left = [x for x in arr if x < pivot]
        right = [x for x in arr if x > pivot]
        return quick_sort(left) + [pivot] + quick_sort
"""

Metrics