mwitiderrick's picture
Adding Evaluation Results (#3)
c0e7ac6 verified
metadata
language:
  - en
license: apache-2.0
library_name: transformers
tags:
  - transformers
datasets:
  - mwitiderrick/AlpacaCode
base_model: mwitiderrick/open_llama_3b_code_instruct_0.1
inference: true
model_type: llama
prompt_template: |
  <s>[INST] 
  {prompt}
  [/INST]
created_by: mwitiderrick
pipeline_tag: text-generation
model-index:
  - name: mwitiderrick/open_llama_3b_instruct_v_0.2
    results:
      - task:
          type: text-generation
        dataset:
          name: hellaswag
          type: hellaswag
        metrics:
          - type: hellaswag (0-Shot)
            value: 0.66
            name: hellaswag(0-Shot)
      - task:
          type: text-generation
        dataset:
          name: winogrande
          type: winogrande
        metrics:
          - type: winogrande (0-Shot)
            value: 0.6322
            name: winogrande(0-Shot)
      - task:
          type: text-generation
        dataset:
          name: arc_challenge
          type: arc_challenge
        metrics:
          - type: arc_challenge (0-Shot)
            value: 0.3447
            name: arc_challenge(0-Shot)
        source:
          url: https://huggingface.co/mwitiderrick/open_llama_3b_instruct_v_0.2
          name: open_llama_3b_instruct_v_0.2 model card
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 40.7
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_glaive_assistant_v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 67.45
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_glaive_assistant_v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 27.74
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_glaive_assistant_v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 35.86
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_glaive_assistant_v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 64.72
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_glaive_assistant_v0.1
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 1.97
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mwitiderrick/open_llama_3b_glaive_assistant_v0.1
          name: Open LLM Leaderboard

OpenLLaMA Glaive: An Open Reproduction of LLaMA

This is an OpenLlama model Code Instruct that has been fine-tuned on 1 epoch of the Glaive Assistsnt dataset.

Prompt Template

<s>[INST] {{ user_msg }} [/INST]

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM,pipeline

tokenizer = AutoTokenizer.from_pretrained("mwitiderrick/open_llama_3b_glaive_code_v0.1")
model = AutoModelForCausalLM.from_pretrained("mwitiderrick/open_llama_3b_glaive_v0.1")
query = "Write a quick sort algorithm in Python"
text_gen = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
output = text_gen(f"<s>[INST]{query}[/INST]")
print(output[0]['generated_text'])
"""
<s>[INST]Write a quick sort algorithm in Python[/INST]

Quick sort is a divide and conquer algorithm that sorts an array in-place.
It works by repeatedly dividing the array into two sub-arrays, sorting
them, and then merging them back together.

Here's a Python implementation of the quick sort algorithm:

def quick_sort(arr):
    if len(arr) <= 1:
        return arr
    else:
        pivot = arr[len(arr) // 2]
        left = [x for x in arr if x < pivot]
        right = [x for x in arr if x > pivot]
        return quick_sort(left) + [pivot] + quick_sort
"""

Metrics

Detailed metrics

|  Tasks  |Version|Filter|n-shot| Metric |Value |   |Stderr|
|---------|-------|------|-----:|--------|-----:|---|-----:|
|hellaswag|Yaml   |none  |     0|acc     |0.4974|±  |0.0050|
|         |       |none  |     0|acc_norm|0.6600|±  |0.0047|
|  Groups  |Version|Filter|n-shot|  Metric   | Value  |   |Stderr|
|----------|-------|------|-----:|-----------|-------:|---|-----:|
|truthfulqa|N/A    |none  |     0|bleu_max   | 23.5771|±  |0.5407|
|          |       |none  |     0|bleu_acc   |  0.2754|±  |0.0002|
|          |       |none  |     0|bleu_diff  | -8.1019|±  |0.5137|
|          |       |none  |     0|rouge1_max | 49.5707|±  |0.6501|
|          |       |none  |     0|rouge1_acc |  0.2607|±  |0.0002|
|          |       |none  |     0|rouge1_diff| -9.8962|±  |0.5492|
|          |       |none  |     0|rouge2_max | 33.0399|±  |0.8237|
|          |       |none  |     0|rouge2_acc |  0.2313|±  |0.0002|
|          |       |none  |     0|rouge2_diff|-11.9054|±  |0.7963|
|          |       |none  |     0|rougeL_max | 46.3168|±  |0.6705|
|          |       |none  |     0|rougeL_acc |  0.2521|±  |0.0002|
|          |       |none  |     0|rougeL_diff|-10.1301|±  |0.5669|
|          |       |none  |     0|acc        |  0.3191|±  |0.0405|
|  Tasks   |Version|Filter|n-shot|Metric|Value |   |Stderr|
|----------|-------|------|-----:|------|-----:|---|-----:|
|winogrande|Yaml   |none  |     0|acc   |0.6322|±  |0.0136|
|    Tasks    |Version|Filter|n-shot| Metric |Value |   |Stderr|
|-------------|-------|------|-----:|--------|-----:|---|-----:|
|arc_challenge|Yaml   |none  |     0|acc     |0.3234|±  |0.0137|
|             |       |none  |     0|acc_norm|0.3447|±  |0.0139|

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 39.74
AI2 Reasoning Challenge (25-Shot) 40.70
HellaSwag (10-Shot) 67.45
MMLU (5-Shot) 27.74
TruthfulQA (0-shot) 35.86
Winogrande (5-shot) 64.72
GSM8k (5-shot) 1.97