Evaluation results for mwong/roberta-base-climate-evidence-related model as a base model for other tasks

#1
by eladven - opened
Files changed (1) hide show
  1. README.md +14 -1
README.md CHANGED
@@ -15,4 +15,17 @@ metrics: f1
15
 
16
  # ClimateRoberta
17
 
18
- ClimateRoberta is a classifier model that predicts if climate related evidence is related to query claim. The model achieved F1 score of 80.13% with test dataset "mwong/climate-evidence-related". Using pretrained roberta-base model, the classifier head is trained on Fever dataset and adapted to climate domain using ClimateFever dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
  # ClimateRoberta
17
 
18
+ ClimateRoberta is a classifier model that predicts if climate related evidence is related to query claim. The model achieved F1 score of 80.13% with test dataset "mwong/climate-evidence-related". Using pretrained roberta-base model, the classifier head is trained on Fever dataset and adapted to climate domain using ClimateFever dataset.
19
+ ## Model Recycling
20
+
21
+ [Evaluation on 36 datasets](https://ibm.github.io/model-recycling/model_gain_chart?avg=0.98&mnli_lp=nan&20_newsgroup=-0.15&ag_news=0.16&amazon_reviews_multi=-0.04&anli=-0.13&boolq=-6.29&cb=9.93&cola=-0.31&copa=35.90&dbpedia=0.41&esnli=-1.35&financial_phrasebank=-0.51&imdb=0.09&isear=0.67&mnli=0.14&mrpc=2.09&multirc=25.91&poem_sentiment=-0.29&qnli=-0.11&qqp=-0.78&rotten_tomatoes=0.51&rte=-0.20&sst2=0.95&sst_5bins=-1.97&stsb=-16.78&trec_coarse=-0.31&trec_fine=-0.36&tweet_ev_emoji=0.27&tweet_ev_emotion=-0.40&tweet_ev_hate=-1.24&tweet_ev_irony=-0.13&tweet_ev_offensive=0.56&tweet_ev_sentiment=-0.69&wic=-10.55&wnli=0.14&wsc=0.19&yahoo_answers=-0.00&model_name=mwong%2Froberta-base-climate-evidence-related&base_name=roberta-base) using mwong/roberta-base-climate-evidence-related as a base model yields average score of 77.21 in comparison to 76.22 by roberta-base.
22
+
23
+ The model is ranked 3rd among all tested models for the roberta-base architecture as of 21/12/2022
24
+ Results:
25
+
26
+ | 20_newsgroup | ag_news | amazon_reviews_multi | anli | boolq | cb | cola | copa | dbpedia | esnli | financial_phrasebank | imdb | isear | mnli | mrpc | multirc | poem_sentiment | qnli | qqp | rotten_tomatoes | rte | sst2 | sst_5bins | stsb | trec_coarse | trec_fine | tweet_ev_emoji | tweet_ev_emotion | tweet_ev_hate | tweet_ev_irony | tweet_ev_offensive | tweet_ev_sentiment | wic | wnli | wsc | yahoo_answers |
27
+ |---------------:|----------:|-----------------------:|--------:|--------:|-----:|--------:|-------:|----------:|--------:|-----------------------:|-------:|--------:|--------:|--------:|----------:|-----------------:|--------:|--------:|------------------:|--------:|--------:|------------:|--------:|--------------:|------------:|-----------------:|-------------------:|----------------:|-----------------:|---------------------:|---------------------:|--------:|--------:|--------:|----------------:|
28
+ | 85.1301 | 89.9333 | 66.54 | 50.2188 | 72.4 | 77.7 | 83.2215 | 84.6 | 77.7 | 89.6478 | 84.6 | 93.988 | 73.1421 | 87.1237 | 89.9576 | 87.1237 | 83.6538 | 92.2936 | 89.9333 | 88.9306 | 72.2022 | 95.0688 | 54.7059 | 73.1421 | 96.8 | 87.4 | 46.572 | 81.4215 | 51.6498 | 71.4286 | 85.1163 | 70.3354 | 54.9296 | 54.9296 | 63.4615 | 72.4 |
29
+
30
+
31
+ For more information, see: [Model Recycling](https://ibm.github.io/model-recycling/)