myownip's picture
Upload folder using huggingface_hub
7562595 verified
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
base_model: openlm-research/open_llama_3b_v2
model-index:
- name: qlora-out
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: openlm-research/open_llama_3b_v2
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
push_dataset_to_hub:
datasets:
- path: mhenrichsen/alpaca_2k_test
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
adapter: qlora
lora_model_dir:
sequence_len: 1024
sample_packing: true
lora_r: 8
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
output_dir: ./qlora-out
gradient_accumulation_steps: 1
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_32bit
torchdistx_path:
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: false
fp16: true
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
gptq_groupsize:
gptq_model_v1:
warmup_steps: 20
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
```
</details><br>
# qlora-out
This model is a fine-tuned version of [openlm-research/open_llama_3b_v2](https://huggingface.co/openlm-research/open_llama_3b_v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4177
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.3026 | 0.01 | 1 | 1.3435 |
| 1.1146 | 0.25 | 50 | 1.1476 |
| 1.2387 | 0.5 | 100 | 1.1319 |
| 1.4159 | 0.75 | 150 | 1.1192 |
| 1.2807 | 1.01 | 200 | 1.1153 |
| 1.0465 | 1.24 | 250 | 1.1569 |
| 0.9577 | 1.49 | 300 | 1.1493 |
| 1.1257 | 1.74 | 350 | 1.1462 |
| 0.9404 | 1.99 | 400 | 1.1520 |
| 0.7161 | 2.22 | 450 | 1.2603 |
| 0.5897 | 2.47 | 500 | 1.2661 |
| 0.5271 | 2.72 | 550 | 1.2814 |
| 0.6239 | 2.97 | 600 | 1.2705 |
| 0.3486 | 3.21 | 650 | 1.3848 |
| 0.5591 | 3.46 | 700 | 1.4171 |
| 0.3804 | 3.71 | 750 | 1.4177 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.0