Higobeatz's picture
freevc plugin
0dabde8
import yaml
import random
import argparse
import os
import time
from tqdm import tqdm
from pathlib import Path
import torch
from torch.utils.data import DataLoader
from accelerate import Accelerator
from diffusers import DDIMScheduler
from configs.plugin import get_params
from model.p2e_cross import P2E_Cross
from modules.speaker_encoder.encoder import inference as spk_encoder
from transformers import T5Tokenizer, T5EncoderModel, AutoModel
from inference_freevc import eval_plugin
from dataset.dreamvc import DreamData
# from vc_wrapper import load_diffvc_models
from freevc_wrapper import get_freevc_models
from utils import minmax_norm_diff, reverse_minmax_norm_diff, scale_shift
parser = argparse.ArgumentParser()
# config settings
parser.add_argument('--config-name', type=str, default='Plugin_freevc')
parser.add_argument('--vc-unet-path', type=str, default='freevc')
parser.add_argument('--speaker-path', type=str, default='speaker_encoder/ckpt/pretrained_bak_5805000.pt')
# training settings
parser.add_argument("--amp", type=str, default='fp16')
parser.add_argument('--epochs', type=int, default=200)
parser.add_argument('--batch-size', type=int, default=32)
parser.add_argument('--num-workers', type=int, default=8)
parser.add_argument('--num-threads', type=int, default=1)
parser.add_argument('--save-every', type=int, default=10)
# log and random seed
parser.add_argument('--random-seed', type=int, default=2023)
parser.add_argument('--log-step', type=int, default=200)
parser.add_argument('--log-dir', type=str, default='../logs/')
parser.add_argument('--save-dir', type=str, default='../ckpts/')
args = parser.parse_args()
params = get_params(args.config_name)
args.log_dir = args.log_dir + args.config_name + '/'
with open('model/p2e_cross.yaml', 'r') as fp:
config = yaml.safe_load(fp)
if os.path.exists(args.save_dir + args.config_name) is False:
os.makedirs(args.save_dir + args.config_name)
if os.path.exists(args.log_dir) is False:
os.makedirs(args.log_dir)
if __name__ == '__main__':
# Fix the random seed
random.seed(args.random_seed)
torch.manual_seed(args.random_seed)
# Set device
torch.set_num_threads(args.num_threads)
if torch.cuda.is_available():
args.device = 'cuda'
torch.cuda.manual_seed(args.random_seed)
torch.cuda.manual_seed_all(args.random_seed)
torch.backends.cuda.matmul.allow_tf32 = True
if torch.backends.cudnn.is_available():
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cudnn.benchmark = False
else:
args.device = 'cpu'
train_set = DreamData(data_dir='../prepare_freevc/spk/', meta_dir='../prepare/plugin_meta.csv',
subset='train', prompt_dir='../prepare/prompts.csv',)
train_loader = DataLoader(train_set, num_workers=args.num_workers, batch_size=args.batch_size, shuffle=True)
# use accelerator for multi-gpu training
accelerator = Accelerator(mixed_precision=args.amp)
# vc_unet, hifigan, _, logmel, vc_scheduler = load_diffvc_models(args.vc_unet_path,
# args.vocoder_path,
# args.speaker_path,
# args.vc_config_path,
# accelerator.device)
freevc_24, cmodel, _, hps = get_freevc_models(args.vc_unet_path, args.speaker_path, accelerator.device)
# speaker
# spk_encoder.load_model(Path(args.speaker_path), accelerator.device)
# text encoder
tokenizer = T5Tokenizer.from_pretrained(params.text_encoder.model)
text_encoder = T5EncoderModel.from_pretrained(params.text_encoder.model).to(accelerator.device)
text_encoder.eval()
# main U-Net
model = P2E_Cross(config['diffwrap']).to(accelerator.device)
model.load_state_dict(torch.load('../ckpts/Plugin_freevc/49.pt')['model'])
total_params = sum([param.nelement() for param in model.parameters()])
print("Number of parameter: %.2fM" % (total_params / 1e6))
if params.diff.v_prediction:
print('v prediction')
noise_scheduler = DDIMScheduler(num_train_timesteps=params.diff.num_train_steps,
beta_start=params.diff.beta_start, beta_end=params.diff.beta_end,
rescale_betas_zero_snr=True,
timestep_spacing="trailing",
clip_sample=False,
prediction_type='v_prediction')
else:
print('noise prediction')
noise_scheduler = DDIMScheduler(num_train_timesteps=args.num_train_steps,
beta_start=args.beta_start, beta_end=args.beta_end,
clip_sample=False,
prediction_type='epsilon')
optimizer = torch.optim.AdamW(model.parameters(),
lr=params.opt.learning_rate,
betas=(params.opt.beta1, params.opt.beta2),
weight_decay=params.opt.weight_decay,
eps=params.opt.adam_epsilon,
)
loss_func = torch.nn.MSELoss()
model, optimizer, train_loader = accelerator.prepare(model, optimizer, train_loader)
global_step = 0
losses = 0
if accelerator.is_main_process:
eval_plugin(freevc_24, cmodel, [tokenizer, text_encoder],
model, noise_scheduler, (1, 256, 1),
val_meta='../prepare/val_meta.csv',
val_folder='/home/jerry/Projects/Dataset/Speech/vctk_libritts/',
guidance_scale=3.0, guidance_rescale=0.0,
ddim_steps=100, eta=1, random_seed=None,
device=accelerator.device,
epoch='test', save_path=args.log_dir + 'output/', val_num=10)
accelerator.wait_for_everyone()
for epoch in range(args.epochs):
model.train()
for step, batch in enumerate(tqdm(train_loader)):
spk_embed, prompt = batch
spk_embed = spk_embed.unsqueeze(-1)
with torch.no_grad():
text_batch = tokenizer(prompt,
max_length=32,
padding='max_length', truncation=True, return_tensors="pt")
text, text_mask = text_batch.input_ids.to(spk_embed.device), \
text_batch.attention_mask.to(spk_embed.device)
text = text_encoder(input_ids=text, attention_mask=text_mask)[0]
spk_embed = scale_shift(spk_embed, 20, -0.035)
# spk_embed = minmax_norm_diff(spk_embed, vmax=0.5, vmin=0.0)
# content_clip = align_seq(content_clip, audio_clip.shape[-1])
# f0_clip = align_seq(f0_clip, audio_clip.shape[-1])
# adding noise
noise = torch.randn(spk_embed.shape).to(accelerator.device)
timesteps = torch.randint(0, params.diff.num_train_steps, (noise.shape[0],),
device=accelerator.device, ).long()
noisy_target = noise_scheduler.add_noise(spk_embed, noise, timesteps)
# v prediction - model output
velocity = noise_scheduler.get_velocity(spk_embed, noise, timesteps)
# inference
pred = model(noisy_target, timesteps, text, text_mask, train_cfg=True, cfg_prob=0.25)
# backward
if params.diff.v_prediction:
loss = loss_func(pred, velocity)
else:
loss = loss_func(pred, noise)
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
global_step += 1
losses += loss.item()
if accelerator.is_main_process:
if global_step % args.log_step == 0:
n = open(args.log_dir + 'diff_vc.txt', mode='a')
n.write(time.asctime(time.localtime(time.time())))
n.write('\n')
n.write('Epoch: [{}][{}] Batch: [{}][{}] Loss: {:.6f}\n'.format(
epoch + 1, args.epochs, step + 1, len(train_loader), losses / args.log_step))
n.close()
losses = 0.0
accelerator.wait_for_everyone()
if (epoch + 1) % args.save_every == 0:
if accelerator.is_main_process:
eval_plugin(freevc_24, cmodel, [tokenizer, text_encoder],
model, noise_scheduler, (1, 256, 1),
val_meta='../prepare/val_meta.csv',
val_folder='/home/jerry/Projects/Dataset/Speech/vctk_libritts/',
guidance_scale=3, guidance_rescale=0.0,
ddim_steps=50, eta=1, random_seed=2024,
device=accelerator.device,
epoch=epoch, save_path=args.log_dir + 'output/', val_num=10)
unwrapped_unet = accelerator.unwrap_model(model)
accelerator.save({
"model": unwrapped_unet.state_dict(),
}, args.save_dir + args.config_name + '/' + str(epoch) + '.pt')