nadeem1362's picture
Upload README.md with huggingface_hub
160859a verified
|
raw
history blame
61.5 kB
metadata
language:
  - en
license: apache-2.0
library_name: sentence-transformers
tags:
  - mteb
  - transformers.js
  - transformers
  - llama-cpp
  - gguf-my-repo
pipeline_tag: feature-extraction
model-index:
  - name: mxbai-angle-large-v1
    results:
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonCounterfactualClassification (en)
          type: mteb/amazon_counterfactual
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 75.044776119403
          - type: ap
            value: 37.7362433623053
          - type: f1
            value: 68.92736573359774
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonPolarityClassification
          type: mteb/amazon_polarity
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 93.84025000000001
          - type: ap
            value: 90.93190875404055
          - type: f1
            value: 93.8297833897293
      - task:
          type: Classification
        dataset:
          name: MTEB AmazonReviewsClassification (en)
          type: mteb/amazon_reviews_multi
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 49.184
          - type: f1
            value: 48.74163227751588
      - task:
          type: Retrieval
        dataset:
          name: MTEB ArguAna
          type: arguana
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 41.252
          - type: map_at_10
            value: 57.778
          - type: map_at_100
            value: 58.233000000000004
          - type: map_at_1000
            value: 58.23700000000001
          - type: map_at_3
            value: 53.449999999999996
          - type: map_at_5
            value: 56.376000000000005
          - type: mrr_at_1
            value: 41.679
          - type: mrr_at_10
            value: 57.92699999999999
          - type: mrr_at_100
            value: 58.389
          - type: mrr_at_1000
            value: 58.391999999999996
          - type: mrr_at_3
            value: 53.651
          - type: mrr_at_5
            value: 56.521
          - type: ndcg_at_1
            value: 41.252
          - type: ndcg_at_10
            value: 66.018
          - type: ndcg_at_100
            value: 67.774
          - type: ndcg_at_1000
            value: 67.84400000000001
          - type: ndcg_at_3
            value: 57.372
          - type: ndcg_at_5
            value: 62.646
          - type: precision_at_1
            value: 41.252
          - type: precision_at_10
            value: 9.189
          - type: precision_at_100
            value: 0.991
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 22.902
          - type: precision_at_5
            value: 16.302
          - type: recall_at_1
            value: 41.252
          - type: recall_at_10
            value: 91.892
          - type: recall_at_100
            value: 99.14699999999999
          - type: recall_at_1000
            value: 99.644
          - type: recall_at_3
            value: 68.706
          - type: recall_at_5
            value: 81.50800000000001
      - task:
          type: Clustering
        dataset:
          name: MTEB ArxivClusteringP2P
          type: mteb/arxiv-clustering-p2p
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 48.97294504317859
      - task:
          type: Clustering
        dataset:
          name: MTEB ArxivClusteringS2S
          type: mteb/arxiv-clustering-s2s
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 42.98071077674629
      - task:
          type: Reranking
        dataset:
          name: MTEB AskUbuntuDupQuestions
          type: mteb/askubuntudupquestions-reranking
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 65.16477858490782
          - type: mrr
            value: 78.23583080508287
      - task:
          type: STS
        dataset:
          name: MTEB BIOSSES
          type: mteb/biosses-sts
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 89.6277629421789
          - type: cos_sim_spearman
            value: 88.4056288400568
          - type: euclidean_pearson
            value: 87.94871847578163
          - type: euclidean_spearman
            value: 88.4056288400568
          - type: manhattan_pearson
            value: 87.73271254229648
          - type: manhattan_spearman
            value: 87.91826833762677
      - task:
          type: Classification
        dataset:
          name: MTEB Banking77Classification
          type: mteb/banking77
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 87.81818181818181
          - type: f1
            value: 87.79879337316918
      - task:
          type: Clustering
        dataset:
          name: MTEB BiorxivClusteringP2P
          type: mteb/biorxiv-clustering-p2p
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 39.91773608582761
      - task:
          type: Clustering
        dataset:
          name: MTEB BiorxivClusteringS2S
          type: mteb/biorxiv-clustering-s2s
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 36.73059477462478
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackAndroidRetrieval
          type: BeIR/cqadupstack
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 32.745999999999995
          - type: map_at_10
            value: 43.632
          - type: map_at_100
            value: 45.206
          - type: map_at_1000
            value: 45.341
          - type: map_at_3
            value: 39.956
          - type: map_at_5
            value: 42.031
          - type: mrr_at_1
            value: 39.485
          - type: mrr_at_10
            value: 49.537
          - type: mrr_at_100
            value: 50.249
          - type: mrr_at_1000
            value: 50.294000000000004
          - type: mrr_at_3
            value: 46.757
          - type: mrr_at_5
            value: 48.481
          - type: ndcg_at_1
            value: 39.485
          - type: ndcg_at_10
            value: 50.058
          - type: ndcg_at_100
            value: 55.586
          - type: ndcg_at_1000
            value: 57.511
          - type: ndcg_at_3
            value: 44.786
          - type: ndcg_at_5
            value: 47.339999999999996
          - type: precision_at_1
            value: 39.485
          - type: precision_at_10
            value: 9.557
          - type: precision_at_100
            value: 1.552
          - type: precision_at_1000
            value: 0.202
          - type: precision_at_3
            value: 21.412
          - type: precision_at_5
            value: 15.479000000000001
          - type: recall_at_1
            value: 32.745999999999995
          - type: recall_at_10
            value: 62.056
          - type: recall_at_100
            value: 85.088
          - type: recall_at_1000
            value: 96.952
          - type: recall_at_3
            value: 46.959
          - type: recall_at_5
            value: 54.06999999999999
          - type: map_at_1
            value: 31.898
          - type: map_at_10
            value: 42.142
          - type: map_at_100
            value: 43.349
          - type: map_at_1000
            value: 43.483
          - type: map_at_3
            value: 39.18
          - type: map_at_5
            value: 40.733000000000004
          - type: mrr_at_1
            value: 39.617999999999995
          - type: mrr_at_10
            value: 47.922
          - type: mrr_at_100
            value: 48.547000000000004
          - type: mrr_at_1000
            value: 48.597
          - type: mrr_at_3
            value: 45.86
          - type: mrr_at_5
            value: 46.949000000000005
          - type: ndcg_at_1
            value: 39.617999999999995
          - type: ndcg_at_10
            value: 47.739
          - type: ndcg_at_100
            value: 51.934999999999995
          - type: ndcg_at_1000
            value: 54.007000000000005
          - type: ndcg_at_3
            value: 43.748
          - type: ndcg_at_5
            value: 45.345
          - type: precision_at_1
            value: 39.617999999999995
          - type: precision_at_10
            value: 8.962
          - type: precision_at_100
            value: 1.436
          - type: precision_at_1000
            value: 0.192
          - type: precision_at_3
            value: 21.083
          - type: precision_at_5
            value: 14.752
          - type: recall_at_1
            value: 31.898
          - type: recall_at_10
            value: 57.587999999999994
          - type: recall_at_100
            value: 75.323
          - type: recall_at_1000
            value: 88.304
          - type: recall_at_3
            value: 45.275
          - type: recall_at_5
            value: 49.99
          - type: map_at_1
            value: 40.458
          - type: map_at_10
            value: 52.942
          - type: map_at_100
            value: 53.974
          - type: map_at_1000
            value: 54.031
          - type: map_at_3
            value: 49.559999999999995
          - type: map_at_5
            value: 51.408
          - type: mrr_at_1
            value: 46.27
          - type: mrr_at_10
            value: 56.31699999999999
          - type: mrr_at_100
            value: 56.95099999999999
          - type: mrr_at_1000
            value: 56.98
          - type: mrr_at_3
            value: 53.835
          - type: mrr_at_5
            value: 55.252
          - type: ndcg_at_1
            value: 46.27
          - type: ndcg_at_10
            value: 58.964000000000006
          - type: ndcg_at_100
            value: 62.875
          - type: ndcg_at_1000
            value: 63.969
          - type: ndcg_at_3
            value: 53.297000000000004
          - type: ndcg_at_5
            value: 55.938
          - type: precision_at_1
            value: 46.27
          - type: precision_at_10
            value: 9.549000000000001
          - type: precision_at_100
            value: 1.2409999999999999
          - type: precision_at_1000
            value: 0.13799999999999998
          - type: precision_at_3
            value: 23.762
          - type: precision_at_5
            value: 16.262999999999998
          - type: recall_at_1
            value: 40.458
          - type: recall_at_10
            value: 73.446
          - type: recall_at_100
            value: 90.12400000000001
          - type: recall_at_1000
            value: 97.795
          - type: recall_at_3
            value: 58.123000000000005
          - type: recall_at_5
            value: 64.68
          - type: map_at_1
            value: 27.443
          - type: map_at_10
            value: 36.081
          - type: map_at_100
            value: 37.163000000000004
          - type: map_at_1000
            value: 37.232
          - type: map_at_3
            value: 33.308
          - type: map_at_5
            value: 34.724
          - type: mrr_at_1
            value: 29.492
          - type: mrr_at_10
            value: 38.138
          - type: mrr_at_100
            value: 39.065
          - type: mrr_at_1000
            value: 39.119
          - type: mrr_at_3
            value: 35.593
          - type: mrr_at_5
            value: 36.785000000000004
          - type: ndcg_at_1
            value: 29.492
          - type: ndcg_at_10
            value: 41.134
          - type: ndcg_at_100
            value: 46.300999999999995
          - type: ndcg_at_1000
            value: 48.106
          - type: ndcg_at_3
            value: 35.77
          - type: ndcg_at_5
            value: 38.032
          - type: precision_at_1
            value: 29.492
          - type: precision_at_10
            value: 6.249
          - type: precision_at_100
            value: 0.9299999999999999
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 15.065999999999999
          - type: precision_at_5
            value: 10.373000000000001
          - type: recall_at_1
            value: 27.443
          - type: recall_at_10
            value: 54.80199999999999
          - type: recall_at_100
            value: 78.21900000000001
          - type: recall_at_1000
            value: 91.751
          - type: recall_at_3
            value: 40.211000000000006
          - type: recall_at_5
            value: 45.599000000000004
          - type: map_at_1
            value: 18.731
          - type: map_at_10
            value: 26.717999999999996
          - type: map_at_100
            value: 27.897
          - type: map_at_1000
            value: 28.029
          - type: map_at_3
            value: 23.91
          - type: map_at_5
            value: 25.455
          - type: mrr_at_1
            value: 23.134
          - type: mrr_at_10
            value: 31.769
          - type: mrr_at_100
            value: 32.634
          - type: mrr_at_1000
            value: 32.707
          - type: mrr_at_3
            value: 28.938999999999997
          - type: mrr_at_5
            value: 30.531000000000002
          - type: ndcg_at_1
            value: 23.134
          - type: ndcg_at_10
            value: 32.249
          - type: ndcg_at_100
            value: 37.678
          - type: ndcg_at_1000
            value: 40.589999999999996
          - type: ndcg_at_3
            value: 26.985999999999997
          - type: ndcg_at_5
            value: 29.457
          - type: precision_at_1
            value: 23.134
          - type: precision_at_10
            value: 5.8709999999999996
          - type: precision_at_100
            value: 0.988
          - type: precision_at_1000
            value: 0.13799999999999998
          - type: precision_at_3
            value: 12.852
          - type: precision_at_5
            value: 9.428
          - type: recall_at_1
            value: 18.731
          - type: recall_at_10
            value: 44.419
          - type: recall_at_100
            value: 67.851
          - type: recall_at_1000
            value: 88.103
          - type: recall_at_3
            value: 29.919
          - type: recall_at_5
            value: 36.230000000000004
          - type: map_at_1
            value: 30.324
          - type: map_at_10
            value: 41.265
          - type: map_at_100
            value: 42.559000000000005
          - type: map_at_1000
            value: 42.669000000000004
          - type: map_at_3
            value: 38.138
          - type: map_at_5
            value: 39.881
          - type: mrr_at_1
            value: 36.67
          - type: mrr_at_10
            value: 46.774
          - type: mrr_at_100
            value: 47.554
          - type: mrr_at_1000
            value: 47.593
          - type: mrr_at_3
            value: 44.338
          - type: mrr_at_5
            value: 45.723
          - type: ndcg_at_1
            value: 36.67
          - type: ndcg_at_10
            value: 47.367
          - type: ndcg_at_100
            value: 52.623
          - type: ndcg_at_1000
            value: 54.59
          - type: ndcg_at_3
            value: 42.323
          - type: ndcg_at_5
            value: 44.727
          - type: precision_at_1
            value: 36.67
          - type: precision_at_10
            value: 8.518
          - type: precision_at_100
            value: 1.2890000000000001
          - type: precision_at_1000
            value: 0.163
          - type: precision_at_3
            value: 19.955000000000002
          - type: precision_at_5
            value: 14.11
          - type: recall_at_1
            value: 30.324
          - type: recall_at_10
            value: 59.845000000000006
          - type: recall_at_100
            value: 81.77499999999999
          - type: recall_at_1000
            value: 94.463
          - type: recall_at_3
            value: 46.019
          - type: recall_at_5
            value: 52.163000000000004
          - type: map_at_1
            value: 24.229
          - type: map_at_10
            value: 35.004000000000005
          - type: map_at_100
            value: 36.409000000000006
          - type: map_at_1000
            value: 36.521
          - type: map_at_3
            value: 31.793
          - type: map_at_5
            value: 33.432
          - type: mrr_at_1
            value: 30.365
          - type: mrr_at_10
            value: 40.502
          - type: mrr_at_100
            value: 41.372
          - type: mrr_at_1000
            value: 41.435
          - type: mrr_at_3
            value: 37.804
          - type: mrr_at_5
            value: 39.226
          - type: ndcg_at_1
            value: 30.365
          - type: ndcg_at_10
            value: 41.305
          - type: ndcg_at_100
            value: 47.028999999999996
          - type: ndcg_at_1000
            value: 49.375
          - type: ndcg_at_3
            value: 35.85
          - type: ndcg_at_5
            value: 38.12
          - type: precision_at_1
            value: 30.365
          - type: precision_at_10
            value: 7.808
          - type: precision_at_100
            value: 1.228
          - type: precision_at_1000
            value: 0.161
          - type: precision_at_3
            value: 17.352
          - type: precision_at_5
            value: 12.42
          - type: recall_at_1
            value: 24.229
          - type: recall_at_10
            value: 54.673
          - type: recall_at_100
            value: 78.766
          - type: recall_at_1000
            value: 94.625
          - type: recall_at_3
            value: 39.602
          - type: recall_at_5
            value: 45.558
          - type: map_at_1
            value: 26.695
          - type: map_at_10
            value: 36.0895
          - type: map_at_100
            value: 37.309416666666664
          - type: map_at_1000
            value: 37.42558333333334
          - type: map_at_3
            value: 33.19616666666666
          - type: map_at_5
            value: 34.78641666666667
          - type: mrr_at_1
            value: 31.486083333333337
          - type: mrr_at_10
            value: 40.34774999999999
          - type: mrr_at_100
            value: 41.17533333333333
          - type: mrr_at_1000
            value: 41.231583333333326
          - type: mrr_at_3
            value: 37.90075
          - type: mrr_at_5
            value: 39.266999999999996
          - type: ndcg_at_1
            value: 31.486083333333337
          - type: ndcg_at_10
            value: 41.60433333333334
          - type: ndcg_at_100
            value: 46.74525
          - type: ndcg_at_1000
            value: 48.96166666666667
          - type: ndcg_at_3
            value: 36.68825
          - type: ndcg_at_5
            value: 38.966499999999996
          - type: precision_at_1
            value: 31.486083333333337
          - type: precision_at_10
            value: 7.29675
          - type: precision_at_100
            value: 1.1621666666666666
          - type: precision_at_1000
            value: 0.1545
          - type: precision_at_3
            value: 16.8815
          - type: precision_at_5
            value: 11.974583333333333
          - type: recall_at_1
            value: 26.695
          - type: recall_at_10
            value: 53.651916666666665
          - type: recall_at_100
            value: 76.12083333333332
          - type: recall_at_1000
            value: 91.31191666666668
          - type: recall_at_3
            value: 40.03575
          - type: recall_at_5
            value: 45.876666666666665
          - type: map_at_1
            value: 25.668000000000003
          - type: map_at_10
            value: 32.486
          - type: map_at_100
            value: 33.371
          - type: map_at_1000
            value: 33.458
          - type: map_at_3
            value: 30.261
          - type: map_at_5
            value: 31.418000000000003
          - type: mrr_at_1
            value: 28.988000000000003
          - type: mrr_at_10
            value: 35.414
          - type: mrr_at_100
            value: 36.149
          - type: mrr_at_1000
            value: 36.215
          - type: mrr_at_3
            value: 33.333
          - type: mrr_at_5
            value: 34.43
          - type: ndcg_at_1
            value: 28.988000000000003
          - type: ndcg_at_10
            value: 36.732
          - type: ndcg_at_100
            value: 41.331
          - type: ndcg_at_1000
            value: 43.575
          - type: ndcg_at_3
            value: 32.413
          - type: ndcg_at_5
            value: 34.316
          - type: precision_at_1
            value: 28.988000000000003
          - type: precision_at_10
            value: 5.7059999999999995
          - type: precision_at_100
            value: 0.882
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 13.65
          - type: precision_at_5
            value: 9.417
          - type: recall_at_1
            value: 25.668000000000003
          - type: recall_at_10
            value: 47.147
          - type: recall_at_100
            value: 68.504
          - type: recall_at_1000
            value: 85.272
          - type: recall_at_3
            value: 35.19
          - type: recall_at_5
            value: 39.925
          - type: map_at_1
            value: 17.256
          - type: map_at_10
            value: 24.58
          - type: map_at_100
            value: 25.773000000000003
          - type: map_at_1000
            value: 25.899
          - type: map_at_3
            value: 22.236
          - type: map_at_5
            value: 23.507
          - type: mrr_at_1
            value: 20.957
          - type: mrr_at_10
            value: 28.416000000000004
          - type: mrr_at_100
            value: 29.447000000000003
          - type: mrr_at_1000
            value: 29.524
          - type: mrr_at_3
            value: 26.245
          - type: mrr_at_5
            value: 27.451999999999998
          - type: ndcg_at_1
            value: 20.957
          - type: ndcg_at_10
            value: 29.285
          - type: ndcg_at_100
            value: 35.003
          - type: ndcg_at_1000
            value: 37.881
          - type: ndcg_at_3
            value: 25.063000000000002
          - type: ndcg_at_5
            value: 26.983
          - type: precision_at_1
            value: 20.957
          - type: precision_at_10
            value: 5.344
          - type: precision_at_100
            value: 0.958
          - type: precision_at_1000
            value: 0.13799999999999998
          - type: precision_at_3
            value: 11.918
          - type: precision_at_5
            value: 8.596
          - type: recall_at_1
            value: 17.256
          - type: recall_at_10
            value: 39.644
          - type: recall_at_100
            value: 65.279
          - type: recall_at_1000
            value: 85.693
          - type: recall_at_3
            value: 27.825
          - type: recall_at_5
            value: 32.792
          - type: map_at_1
            value: 26.700000000000003
          - type: map_at_10
            value: 36.205999999999996
          - type: map_at_100
            value: 37.316
          - type: map_at_1000
            value: 37.425000000000004
          - type: map_at_3
            value: 33.166000000000004
          - type: map_at_5
            value: 35.032999999999994
          - type: mrr_at_1
            value: 31.436999999999998
          - type: mrr_at_10
            value: 40.61
          - type: mrr_at_100
            value: 41.415
          - type: mrr_at_1000
            value: 41.48
          - type: mrr_at_3
            value: 37.966
          - type: mrr_at_5
            value: 39.599000000000004
          - type: ndcg_at_1
            value: 31.436999999999998
          - type: ndcg_at_10
            value: 41.771
          - type: ndcg_at_100
            value: 46.784
          - type: ndcg_at_1000
            value: 49.183
          - type: ndcg_at_3
            value: 36.437000000000005
          - type: ndcg_at_5
            value: 39.291
          - type: precision_at_1
            value: 31.436999999999998
          - type: precision_at_10
            value: 6.987
          - type: precision_at_100
            value: 1.072
          - type: precision_at_1000
            value: 0.13899999999999998
          - type: precision_at_3
            value: 16.448999999999998
          - type: precision_at_5
            value: 11.866
          - type: recall_at_1
            value: 26.700000000000003
          - type: recall_at_10
            value: 54.301
          - type: recall_at_100
            value: 75.871
          - type: recall_at_1000
            value: 92.529
          - type: recall_at_3
            value: 40.201
          - type: recall_at_5
            value: 47.208
          - type: map_at_1
            value: 24.296
          - type: map_at_10
            value: 33.116
          - type: map_at_100
            value: 34.81
          - type: map_at_1000
            value: 35.032000000000004
          - type: map_at_3
            value: 30.105999999999998
          - type: map_at_5
            value: 31.839000000000002
          - type: mrr_at_1
            value: 29.051
          - type: mrr_at_10
            value: 37.803
          - type: mrr_at_100
            value: 38.856
          - type: mrr_at_1000
            value: 38.903999999999996
          - type: mrr_at_3
            value: 35.211
          - type: mrr_at_5
            value: 36.545
          - type: ndcg_at_1
            value: 29.051
          - type: ndcg_at_10
            value: 39.007
          - type: ndcg_at_100
            value: 45.321
          - type: ndcg_at_1000
            value: 47.665
          - type: ndcg_at_3
            value: 34.1
          - type: ndcg_at_5
            value: 36.437000000000005
          - type: precision_at_1
            value: 29.051
          - type: precision_at_10
            value: 7.668
          - type: precision_at_100
            value: 1.542
          - type: precision_at_1000
            value: 0.24
          - type: precision_at_3
            value: 16.14
          - type: precision_at_5
            value: 11.897
          - type: recall_at_1
            value: 24.296
          - type: recall_at_10
            value: 49.85
          - type: recall_at_100
            value: 78.457
          - type: recall_at_1000
            value: 92.618
          - type: recall_at_3
            value: 36.138999999999996
          - type: recall_at_5
            value: 42.223
          - type: map_at_1
            value: 20.591
          - type: map_at_10
            value: 28.902
          - type: map_at_100
            value: 29.886000000000003
          - type: map_at_1000
            value: 29.987000000000002
          - type: map_at_3
            value: 26.740000000000002
          - type: map_at_5
            value: 27.976
          - type: mrr_at_1
            value: 22.366
          - type: mrr_at_10
            value: 30.971
          - type: mrr_at_100
            value: 31.865
          - type: mrr_at_1000
            value: 31.930999999999997
          - type: mrr_at_3
            value: 28.927999999999997
          - type: mrr_at_5
            value: 30.231
          - type: ndcg_at_1
            value: 22.366
          - type: ndcg_at_10
            value: 33.641
          - type: ndcg_at_100
            value: 38.477
          - type: ndcg_at_1000
            value: 41.088
          - type: ndcg_at_3
            value: 29.486
          - type: ndcg_at_5
            value: 31.612000000000002
          - type: precision_at_1
            value: 22.366
          - type: precision_at_10
            value: 5.3420000000000005
          - type: precision_at_100
            value: 0.828
          - type: precision_at_1000
            value: 0.11800000000000001
          - type: precision_at_3
            value: 12.939
          - type: precision_at_5
            value: 9.094
          - type: recall_at_1
            value: 20.591
          - type: recall_at_10
            value: 46.052
          - type: recall_at_100
            value: 68.193
          - type: recall_at_1000
            value: 87.638
          - type: recall_at_3
            value: 34.966
          - type: recall_at_5
            value: 40.082
      - task:
          type: Retrieval
        dataset:
          name: MTEB ClimateFEVER
          type: climate-fever
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 15.091
          - type: map_at_10
            value: 26.38
          - type: map_at_100
            value: 28.421999999999997
          - type: map_at_1000
            value: 28.621999999999996
          - type: map_at_3
            value: 21.597
          - type: map_at_5
            value: 24.12
          - type: mrr_at_1
            value: 34.266999999999996
          - type: mrr_at_10
            value: 46.864
          - type: mrr_at_100
            value: 47.617
          - type: mrr_at_1000
            value: 47.644
          - type: mrr_at_3
            value: 43.312
          - type: mrr_at_5
            value: 45.501000000000005
          - type: ndcg_at_1
            value: 34.266999999999996
          - type: ndcg_at_10
            value: 36.095
          - type: ndcg_at_100
            value: 43.447
          - type: ndcg_at_1000
            value: 46.661
          - type: ndcg_at_3
            value: 29.337999999999997
          - type: ndcg_at_5
            value: 31.824
          - type: precision_at_1
            value: 34.266999999999996
          - type: precision_at_10
            value: 11.472
          - type: precision_at_100
            value: 1.944
          - type: precision_at_1000
            value: 0.255
          - type: precision_at_3
            value: 21.933
          - type: precision_at_5
            value: 17.224999999999998
          - type: recall_at_1
            value: 15.091
          - type: recall_at_10
            value: 43.022
          - type: recall_at_100
            value: 68.075
          - type: recall_at_1000
            value: 85.76
          - type: recall_at_3
            value: 26.564
          - type: recall_at_5
            value: 33.594
      - task:
          type: Retrieval
        dataset:
          name: MTEB DBPedia
          type: dbpedia-entity
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 9.252
          - type: map_at_10
            value: 20.923
          - type: map_at_100
            value: 30.741000000000003
          - type: map_at_1000
            value: 32.542
          - type: map_at_3
            value: 14.442
          - type: map_at_5
            value: 17.399
          - type: mrr_at_1
            value: 70.25
          - type: mrr_at_10
            value: 78.17
          - type: mrr_at_100
            value: 78.444
          - type: mrr_at_1000
            value: 78.45100000000001
          - type: mrr_at_3
            value: 76.958
          - type: mrr_at_5
            value: 77.571
          - type: ndcg_at_1
            value: 58.375
          - type: ndcg_at_10
            value: 44.509
          - type: ndcg_at_100
            value: 49.897999999999996
          - type: ndcg_at_1000
            value: 57.269999999999996
          - type: ndcg_at_3
            value: 48.64
          - type: ndcg_at_5
            value: 46.697
          - type: precision_at_1
            value: 70.25
          - type: precision_at_10
            value: 36.05
          - type: precision_at_100
            value: 11.848
          - type: precision_at_1000
            value: 2.213
          - type: precision_at_3
            value: 52.917
          - type: precision_at_5
            value: 45.7
          - type: recall_at_1
            value: 9.252
          - type: recall_at_10
            value: 27.006999999999998
          - type: recall_at_100
            value: 57.008
          - type: recall_at_1000
            value: 80.697
          - type: recall_at_3
            value: 15.798000000000002
          - type: recall_at_5
            value: 20.4
      - task:
          type: Classification
        dataset:
          name: MTEB EmotionClassification
          type: mteb/emotion
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 50.88
          - type: f1
            value: 45.545495028653384
      - task:
          type: Retrieval
        dataset:
          name: MTEB FEVER
          type: fever
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 75.424
          - type: map_at_10
            value: 83.435
          - type: map_at_100
            value: 83.66900000000001
          - type: map_at_1000
            value: 83.685
          - type: map_at_3
            value: 82.39800000000001
          - type: map_at_5
            value: 83.07
          - type: mrr_at_1
            value: 81.113
          - type: mrr_at_10
            value: 87.77199999999999
          - type: mrr_at_100
            value: 87.862
          - type: mrr_at_1000
            value: 87.86500000000001
          - type: mrr_at_3
            value: 87.17099999999999
          - type: mrr_at_5
            value: 87.616
          - type: ndcg_at_1
            value: 81.113
          - type: ndcg_at_10
            value: 86.909
          - type: ndcg_at_100
            value: 87.746
          - type: ndcg_at_1000
            value: 88.017
          - type: ndcg_at_3
            value: 85.368
          - type: ndcg_at_5
            value: 86.28099999999999
          - type: precision_at_1
            value: 81.113
          - type: precision_at_10
            value: 10.363
          - type: precision_at_100
            value: 1.102
          - type: precision_at_1000
            value: 0.11399999999999999
          - type: precision_at_3
            value: 32.507999999999996
          - type: precision_at_5
            value: 20.138
          - type: recall_at_1
            value: 75.424
          - type: recall_at_10
            value: 93.258
          - type: recall_at_100
            value: 96.545
          - type: recall_at_1000
            value: 98.284
          - type: recall_at_3
            value: 89.083
          - type: recall_at_5
            value: 91.445
      - task:
          type: Retrieval
        dataset:
          name: MTEB FiQA2018
          type: fiqa
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.532
          - type: map_at_10
            value: 37.141999999999996
          - type: map_at_100
            value: 39.162
          - type: map_at_1000
            value: 39.322
          - type: map_at_3
            value: 32.885
          - type: map_at_5
            value: 35.093999999999994
          - type: mrr_at_1
            value: 44.29
          - type: mrr_at_10
            value: 53.516
          - type: mrr_at_100
            value: 54.24
          - type: mrr_at_1000
            value: 54.273
          - type: mrr_at_3
            value: 51.286
          - type: mrr_at_5
            value: 52.413
          - type: ndcg_at_1
            value: 44.29
          - type: ndcg_at_10
            value: 45.268
          - type: ndcg_at_100
            value: 52.125
          - type: ndcg_at_1000
            value: 54.778000000000006
          - type: ndcg_at_3
            value: 41.829
          - type: ndcg_at_5
            value: 42.525
          - type: precision_at_1
            value: 44.29
          - type: precision_at_10
            value: 12.5
          - type: precision_at_100
            value: 1.9720000000000002
          - type: precision_at_1000
            value: 0.245
          - type: precision_at_3
            value: 28.035
          - type: precision_at_5
            value: 20.093
          - type: recall_at_1
            value: 22.532
          - type: recall_at_10
            value: 52.419000000000004
          - type: recall_at_100
            value: 77.43299999999999
          - type: recall_at_1000
            value: 93.379
          - type: recall_at_3
            value: 38.629000000000005
          - type: recall_at_5
            value: 43.858000000000004
      - task:
          type: Retrieval
        dataset:
          name: MTEB HotpotQA
          type: hotpotqa
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 39.359
          - type: map_at_10
            value: 63.966
          - type: map_at_100
            value: 64.87
          - type: map_at_1000
            value: 64.92599999999999
          - type: map_at_3
            value: 60.409
          - type: map_at_5
            value: 62.627
          - type: mrr_at_1
            value: 78.717
          - type: mrr_at_10
            value: 84.468
          - type: mrr_at_100
            value: 84.655
          - type: mrr_at_1000
            value: 84.661
          - type: mrr_at_3
            value: 83.554
          - type: mrr_at_5
            value: 84.133
          - type: ndcg_at_1
            value: 78.717
          - type: ndcg_at_10
            value: 72.03399999999999
          - type: ndcg_at_100
            value: 75.158
          - type: ndcg_at_1000
            value: 76.197
          - type: ndcg_at_3
            value: 67.049
          - type: ndcg_at_5
            value: 69.808
          - type: precision_at_1
            value: 78.717
          - type: precision_at_10
            value: 15.201
          - type: precision_at_100
            value: 1.764
          - type: precision_at_1000
            value: 0.19
          - type: precision_at_3
            value: 43.313
          - type: precision_at_5
            value: 28.165000000000003
          - type: recall_at_1
            value: 39.359
          - type: recall_at_10
            value: 76.003
          - type: recall_at_100
            value: 88.197
          - type: recall_at_1000
            value: 95.003
          - type: recall_at_3
            value: 64.97
          - type: recall_at_5
            value: 70.41199999999999
      - task:
          type: Classification
        dataset:
          name: MTEB ImdbClassification
          type: mteb/imdb
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 92.83200000000001
          - type: ap
            value: 89.33560571859861
          - type: f1
            value: 92.82322915005167
      - task:
          type: Retrieval
        dataset:
          name: MTEB MSMARCO
          type: msmarco
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 21.983
          - type: map_at_10
            value: 34.259
          - type: map_at_100
            value: 35.432
          - type: map_at_1000
            value: 35.482
          - type: map_at_3
            value: 30.275999999999996
          - type: map_at_5
            value: 32.566
          - type: mrr_at_1
            value: 22.579
          - type: mrr_at_10
            value: 34.882999999999996
          - type: mrr_at_100
            value: 35.984
          - type: mrr_at_1000
            value: 36.028
          - type: mrr_at_3
            value: 30.964999999999996
          - type: mrr_at_5
            value: 33.245000000000005
          - type: ndcg_at_1
            value: 22.564
          - type: ndcg_at_10
            value: 41.258
          - type: ndcg_at_100
            value: 46.824
          - type: ndcg_at_1000
            value: 48.037
          - type: ndcg_at_3
            value: 33.17
          - type: ndcg_at_5
            value: 37.263000000000005
          - type: precision_at_1
            value: 22.564
          - type: precision_at_10
            value: 6.572
          - type: precision_at_100
            value: 0.935
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 14.130999999999998
          - type: precision_at_5
            value: 10.544
          - type: recall_at_1
            value: 21.983
          - type: recall_at_10
            value: 62.775000000000006
          - type: recall_at_100
            value: 88.389
          - type: recall_at_1000
            value: 97.603
          - type: recall_at_3
            value: 40.878
          - type: recall_at_5
            value: 50.690000000000005
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPDomainClassification (en)
          type: mteb/mtop_domain
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 93.95120839033288
          - type: f1
            value: 93.73824125055208
      - task:
          type: Classification
        dataset:
          name: MTEB MTOPIntentClassification (en)
          type: mteb/mtop_intent
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 76.78978568171455
          - type: f1
            value: 57.50180552858304
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveIntentClassification (en)
          type: mteb/amazon_massive_intent
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 76.24411566913248
          - type: f1
            value: 74.37851403532832
      - task:
          type: Classification
        dataset:
          name: MTEB MassiveScenarioClassification (en)
          type: mteb/amazon_massive_scenario
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 79.94620040349699
          - type: f1
            value: 80.21293397970435
      - task:
          type: Clustering
        dataset:
          name: MTEB MedrxivClusteringP2P
          type: mteb/medrxiv-clustering-p2p
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 33.44403096245675
      - task:
          type: Clustering
        dataset:
          name: MTEB MedrxivClusteringS2S
          type: mteb/medrxiv-clustering-s2s
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 31.659594631336812
      - task:
          type: Reranking
        dataset:
          name: MTEB MindSmallReranking
          type: mteb/mind_small
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 32.53833075108798
          - type: mrr
            value: 33.78840823218308
      - task:
          type: Retrieval
        dataset:
          name: MTEB NFCorpus
          type: nfcorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 7.185999999999999
          - type: map_at_10
            value: 15.193999999999999
          - type: map_at_100
            value: 19.538
          - type: map_at_1000
            value: 21.178
          - type: map_at_3
            value: 11.208
          - type: map_at_5
            value: 12.745999999999999
          - type: mrr_at_1
            value: 48.916
          - type: mrr_at_10
            value: 58.141
          - type: mrr_at_100
            value: 58.656
          - type: mrr_at_1000
            value: 58.684999999999995
          - type: mrr_at_3
            value: 55.521
          - type: mrr_at_5
            value: 57.239
          - type: ndcg_at_1
            value: 47.059
          - type: ndcg_at_10
            value: 38.644
          - type: ndcg_at_100
            value: 36.272999999999996
          - type: ndcg_at_1000
            value: 44.996
          - type: ndcg_at_3
            value: 43.293
          - type: ndcg_at_5
            value: 40.819
          - type: precision_at_1
            value: 48.916
          - type: precision_at_10
            value: 28.607
          - type: precision_at_100
            value: 9.195
          - type: precision_at_1000
            value: 2.225
          - type: precision_at_3
            value: 40.454
          - type: precision_at_5
            value: 34.985
          - type: recall_at_1
            value: 7.185999999999999
          - type: recall_at_10
            value: 19.654
          - type: recall_at_100
            value: 37.224000000000004
          - type: recall_at_1000
            value: 68.663
          - type: recall_at_3
            value: 12.158
          - type: recall_at_5
            value: 14.674999999999999
      - task:
          type: Retrieval
        dataset:
          name: MTEB NQ
          type: nq
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 31.552000000000003
          - type: map_at_10
            value: 47.75
          - type: map_at_100
            value: 48.728
          - type: map_at_1000
            value: 48.754
          - type: map_at_3
            value: 43.156
          - type: map_at_5
            value: 45.883
          - type: mrr_at_1
            value: 35.66
          - type: mrr_at_10
            value: 50.269
          - type: mrr_at_100
            value: 50.974
          - type: mrr_at_1000
            value: 50.991
          - type: mrr_at_3
            value: 46.519
          - type: mrr_at_5
            value: 48.764
          - type: ndcg_at_1
            value: 35.632000000000005
          - type: ndcg_at_10
            value: 55.786
          - type: ndcg_at_100
            value: 59.748999999999995
          - type: ndcg_at_1000
            value: 60.339
          - type: ndcg_at_3
            value: 47.292
          - type: ndcg_at_5
            value: 51.766999999999996
          - type: precision_at_1
            value: 35.632000000000005
          - type: precision_at_10
            value: 9.267
          - type: precision_at_100
            value: 1.149
          - type: precision_at_1000
            value: 0.12
          - type: precision_at_3
            value: 21.601
          - type: precision_at_5
            value: 15.539
          - type: recall_at_1
            value: 31.552000000000003
          - type: recall_at_10
            value: 77.62400000000001
          - type: recall_at_100
            value: 94.527
          - type: recall_at_1000
            value: 98.919
          - type: recall_at_3
            value: 55.898
          - type: recall_at_5
            value: 66.121
      - task:
          type: Retrieval
        dataset:
          name: MTEB QuoraRetrieval
          type: quora
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 71.414
          - type: map_at_10
            value: 85.37400000000001
          - type: map_at_100
            value: 86.01100000000001
          - type: map_at_1000
            value: 86.027
          - type: map_at_3
            value: 82.562
          - type: map_at_5
            value: 84.284
          - type: mrr_at_1
            value: 82.24000000000001
          - type: mrr_at_10
            value: 88.225
          - type: mrr_at_100
            value: 88.324
          - type: mrr_at_1000
            value: 88.325
          - type: mrr_at_3
            value: 87.348
          - type: mrr_at_5
            value: 87.938
          - type: ndcg_at_1
            value: 82.24000000000001
          - type: ndcg_at_10
            value: 88.97699999999999
          - type: ndcg_at_100
            value: 90.16
          - type: ndcg_at_1000
            value: 90.236
          - type: ndcg_at_3
            value: 86.371
          - type: ndcg_at_5
            value: 87.746
          - type: precision_at_1
            value: 82.24000000000001
          - type: precision_at_10
            value: 13.481000000000002
          - type: precision_at_100
            value: 1.534
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 37.86
          - type: precision_at_5
            value: 24.738
          - type: recall_at_1
            value: 71.414
          - type: recall_at_10
            value: 95.735
          - type: recall_at_100
            value: 99.696
          - type: recall_at_1000
            value: 99.979
          - type: recall_at_3
            value: 88.105
          - type: recall_at_5
            value: 92.17999999999999
      - task:
          type: Clustering
        dataset:
          name: MTEB RedditClustering
          type: mteb/reddit-clustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 60.22146692057259
      - task:
          type: Clustering
        dataset:
          name: MTEB RedditClusteringP2P
          type: mteb/reddit-clustering-p2p
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 65.29273320614578
      - task:
          type: Retrieval
        dataset:
          name: MTEB SCIDOCS
          type: scidocs
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 5.023
          - type: map_at_10
            value: 14.161000000000001
          - type: map_at_100
            value: 16.68
          - type: map_at_1000
            value: 17.072000000000003
          - type: map_at_3
            value: 9.763
          - type: map_at_5
            value: 11.977
          - type: mrr_at_1
            value: 24.8
          - type: mrr_at_10
            value: 37.602999999999994
          - type: mrr_at_100
            value: 38.618
          - type: mrr_at_1000
            value: 38.659
          - type: mrr_at_3
            value: 34.117
          - type: mrr_at_5
            value: 36.082
          - type: ndcg_at_1
            value: 24.8
          - type: ndcg_at_10
            value: 23.316
          - type: ndcg_at_100
            value: 32.613
          - type: ndcg_at_1000
            value: 38.609
          - type: ndcg_at_3
            value: 21.697
          - type: ndcg_at_5
            value: 19.241
          - type: precision_at_1
            value: 24.8
          - type: precision_at_10
            value: 12.36
          - type: precision_at_100
            value: 2.593
          - type: precision_at_1000
            value: 0.402
          - type: precision_at_3
            value: 20.767
          - type: precision_at_5
            value: 17.34
          - type: recall_at_1
            value: 5.023
          - type: recall_at_10
            value: 25.069999999999997
          - type: recall_at_100
            value: 52.563
          - type: recall_at_1000
            value: 81.525
          - type: recall_at_3
            value: 12.613
          - type: recall_at_5
            value: 17.583
      - task:
          type: STS
        dataset:
          name: MTEB SICK-R
          type: mteb/sickr-sts
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 87.71506247604255
          - type: cos_sim_spearman
            value: 82.91813463738802
          - type: euclidean_pearson
            value: 85.5154616194479
          - type: euclidean_spearman
            value: 82.91815254466314
          - type: manhattan_pearson
            value: 85.5280917850374
          - type: manhattan_spearman
            value: 82.92276537286398
      - task:
          type: STS
        dataset:
          name: MTEB STS12
          type: mteb/sts12-sts
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 87.43772054228462
          - type: cos_sim_spearman
            value: 78.75750601716682
          - type: euclidean_pearson
            value: 85.76074482955764
          - type: euclidean_spearman
            value: 78.75651057223058
          - type: manhattan_pearson
            value: 85.73390291701668
          - type: manhattan_spearman
            value: 78.72699385957797
      - task:
          type: STS
        dataset:
          name: MTEB STS13
          type: mteb/sts13-sts
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 89.58144067172472
          - type: cos_sim_spearman
            value: 90.3524512966946
          - type: euclidean_pearson
            value: 89.71365391594237
          - type: euclidean_spearman
            value: 90.35239632843408
          - type: manhattan_pearson
            value: 89.66905421746478
          - type: manhattan_spearman
            value: 90.31508211683513
      - task:
          type: STS
        dataset:
          name: MTEB STS14
          type: mteb/sts14-sts
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 87.77692637102102
          - type: cos_sim_spearman
            value: 85.45710562643485
          - type: euclidean_pearson
            value: 87.42456979928723
          - type: euclidean_spearman
            value: 85.45709386240908
          - type: manhattan_pearson
            value: 87.40754529526272
          - type: manhattan_spearman
            value: 85.44834854173303
      - task:
          type: STS
        dataset:
          name: MTEB STS15
          type: mteb/sts15-sts
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 88.28491331695997
          - type: cos_sim_spearman
            value: 89.62037029566964
          - type: euclidean_pearson
            value: 89.02479391362826
          - type: euclidean_spearman
            value: 89.62036733618466
          - type: manhattan_pearson
            value: 89.00394756040342
          - type: manhattan_spearman
            value: 89.60867744215236
      - task:
          type: STS
        dataset:
          name: MTEB STS16
          type: mteb/sts16-sts
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 85.08911381280191
          - type: cos_sim_spearman
            value: 86.5791780765767
          - type: euclidean_pearson
            value: 86.16063473577861
          - type: euclidean_spearman
            value: 86.57917745378766
          - type: manhattan_pearson
            value: 86.13677924604175
          - type: manhattan_spearman
            value: 86.56115615768685
      - task:
          type: STS
        dataset:
          name: MTEB STS17 (en-en)
          type: mteb/sts17-crosslingual-sts
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 89.58029496205235
          - type: cos_sim_spearman
            value: 89.49551253826998
          - type: euclidean_pearson
            value: 90.13714840963748
          - type: euclidean_spearman
            value: 89.49551253826998
          - type: manhattan_pearson
            value: 90.13039633601363
          - type: manhattan_spearman
            value: 89.4513453745516
      - task:
          type: STS
        dataset:
          name: MTEB STS22 (en)
          type: mteb/sts22-crosslingual-sts
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 69.01546399666435
          - type: cos_sim_spearman
            value: 69.33824484595624
          - type: euclidean_pearson
            value: 70.76511642998874
          - type: euclidean_spearman
            value: 69.33824484595624
          - type: manhattan_pearson
            value: 70.84320785047453
          - type: manhattan_spearman
            value: 69.54233632223537
      - task:
          type: STS
        dataset:
          name: MTEB STSBenchmark
          type: mteb/stsbenchmark-sts
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 87.26389196390119
          - type: cos_sim_spearman
            value: 89.09721478341385
          - type: euclidean_pearson
            value: 88.97208685922517
          - type: euclidean_spearman
            value: 89.09720927308881
          - type: manhattan_pearson
            value: 88.97513670502573
          - type: manhattan_spearman
            value: 89.07647853984004
      - task:
          type: Reranking
        dataset:
          name: MTEB SciDocsRR
          type: mteb/scidocs-reranking
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 87.53075025771936
          - type: mrr
            value: 96.24327651288436
      - task:
          type: Retrieval
        dataset:
          name: MTEB SciFact
          type: scifact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 60.428000000000004
          - type: map_at_10
            value: 70.088
          - type: map_at_100
            value: 70.589
          - type: map_at_1000
            value: 70.614
          - type: map_at_3
            value: 67.191
          - type: map_at_5
            value: 68.515
          - type: mrr_at_1
            value: 63.333
          - type: mrr_at_10
            value: 71.13000000000001
          - type: mrr_at_100
            value: 71.545
          - type: mrr_at_1000
            value: 71.569
          - type: mrr_at_3
            value: 68.944
          - type: mrr_at_5
            value: 70.078
          - type: ndcg_at_1
            value: 63.333
          - type: ndcg_at_10
            value: 74.72800000000001
          - type: ndcg_at_100
            value: 76.64999999999999
          - type: ndcg_at_1000
            value: 77.176
          - type: ndcg_at_3
            value: 69.659
          - type: ndcg_at_5
            value: 71.626
          - type: precision_at_1
            value: 63.333
          - type: precision_at_10
            value: 10
          - type: precision_at_100
            value: 1.09
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 27.111
          - type: precision_at_5
            value: 17.666999999999998
          - type: recall_at_1
            value: 60.428000000000004
          - type: recall_at_10
            value: 87.98899999999999
          - type: recall_at_100
            value: 96.167
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 74.006
          - type: recall_at_5
            value: 79.05
      - task:
          type: PairClassification
        dataset:
          name: MTEB SprintDuplicateQuestions
          type: mteb/sprintduplicatequestions-pairclassification
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.87326732673267
          - type: cos_sim_ap
            value: 96.81770773701805
          - type: cos_sim_f1
            value: 93.6318407960199
          - type: cos_sim_precision
            value: 93.16831683168317
          - type: cos_sim_recall
            value: 94.1
          - type: dot_accuracy
            value: 99.87326732673267
          - type: dot_ap
            value: 96.8174218946665
          - type: dot_f1
            value: 93.6318407960199
          - type: dot_precision
            value: 93.16831683168317
          - type: dot_recall
            value: 94.1
          - type: euclidean_accuracy
            value: 99.87326732673267
          - type: euclidean_ap
            value: 96.81770773701807
          - type: euclidean_f1
            value: 93.6318407960199
          - type: euclidean_precision
            value: 93.16831683168317
          - type: euclidean_recall
            value: 94.1
          - type: manhattan_accuracy
            value: 99.87227722772278
          - type: manhattan_ap
            value: 96.83164126821747
          - type: manhattan_f1
            value: 93.54677338669335
          - type: manhattan_precision
            value: 93.5935935935936
          - type: manhattan_recall
            value: 93.5
          - type: max_accuracy
            value: 99.87326732673267
          - type: max_ap
            value: 96.83164126821747
          - type: max_f1
            value: 93.6318407960199
      - task:
          type: Clustering
        dataset:
          name: MTEB StackExchangeClustering
          type: mteb/stackexchange-clustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 65.6212042420246
      - task:
          type: Clustering
        dataset:
          name: MTEB StackExchangeClusteringP2P
          type: mteb/stackexchange-clustering-p2p
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 35.779230635982564
      - task:
          type: Reranking
        dataset:
          name: MTEB StackOverflowDupQuestions
          type: mteb/stackoverflowdupquestions-reranking
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 55.217701909036286
          - type: mrr
            value: 56.17658995416349
      - task:
          type: Summarization
        dataset:
          name: MTEB SummEval
          type: mteb/summeval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 30.954206018888453
          - type: cos_sim_spearman
            value: 32.71062599450096
          - type: dot_pearson
            value: 30.95420929056943
          - type: dot_spearman
            value: 32.71062599450096
      - task:
          type: Retrieval
        dataset:
          name: MTEB TRECCOVID
          type: trec-covid
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.22699999999999998
          - type: map_at_10
            value: 1.924
          - type: map_at_100
            value: 10.525
          - type: map_at_1000
            value: 24.973
          - type: map_at_3
            value: 0.638
          - type: map_at_5
            value: 1.0659999999999998
          - type: mrr_at_1
            value: 84
          - type: mrr_at_10
            value: 91.067
          - type: mrr_at_100
            value: 91.067
          - type: mrr_at_1000
            value: 91.067
          - type: mrr_at_3
            value: 90.667
          - type: mrr_at_5
            value: 91.067
          - type: ndcg_at_1
            value: 81
          - type: ndcg_at_10
            value: 75.566
          - type: ndcg_at_100
            value: 56.387
          - type: ndcg_at_1000
            value: 49.834
          - type: ndcg_at_3
            value: 80.899
          - type: ndcg_at_5
            value: 80.75099999999999
          - type: precision_at_1
            value: 84
          - type: precision_at_10
            value: 79
          - type: precision_at_100
            value: 57.56
          - type: precision_at_1000
            value: 21.8
          - type: precision_at_3
            value: 84.667
          - type: precision_at_5
            value: 85.2
          - type: recall_at_1
            value: 0.22699999999999998
          - type: recall_at_10
            value: 2.136
          - type: recall_at_100
            value: 13.861
          - type: recall_at_1000
            value: 46.299
          - type: recall_at_3
            value: 0.6649999999999999
          - type: recall_at_5
            value: 1.145
      - task:
          type: Retrieval
        dataset:
          name: MTEB Touche2020
          type: webis-touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 2.752
          - type: map_at_10
            value: 9.951
          - type: map_at_100
            value: 16.794999999999998
          - type: map_at_1000
            value: 18.251
          - type: map_at_3
            value: 5.288
          - type: map_at_5
            value: 6.954000000000001
          - type: mrr_at_1
            value: 38.775999999999996
          - type: mrr_at_10
            value: 50.458000000000006
          - type: mrr_at_100
            value: 51.324999999999996
          - type: mrr_at_1000
            value: 51.339999999999996
          - type: mrr_at_3
            value: 46.939
          - type: mrr_at_5
            value: 47.857
          - type: ndcg_at_1
            value: 36.735
          - type: ndcg_at_10
            value: 25.198999999999998
          - type: ndcg_at_100
            value: 37.938
          - type: ndcg_at_1000
            value: 49.145
          - type: ndcg_at_3
            value: 29.348000000000003
          - type: ndcg_at_5
            value: 25.804
          - type: precision_at_1
            value: 38.775999999999996
          - type: precision_at_10
            value: 22.041
          - type: precision_at_100
            value: 7.939
          - type: precision_at_1000
            value: 1.555
          - type: precision_at_3
            value: 29.932
          - type: precision_at_5
            value: 24.490000000000002
          - type: recall_at_1
            value: 2.752
          - type: recall_at_10
            value: 16.197
          - type: recall_at_100
            value: 49.166
          - type: recall_at_1000
            value: 84.18900000000001
          - type: recall_at_3
            value: 6.438000000000001
          - type: recall_at_5
            value: 9.093
      - task:
          type: Classification
        dataset:
          name: MTEB ToxicConversationsClassification
          type: mteb/toxic_conversations_50k
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 71.47980000000001
          - type: ap
            value: 14.605194452178754
          - type: f1
            value: 55.07362924988948
      - task:
          type: Classification
        dataset:
          name: MTEB TweetSentimentExtractionClassification
          type: mteb/tweet_sentiment_extraction
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 59.708545557441994
          - type: f1
            value: 60.04751270975683
      - task:
          type: Clustering
        dataset:
          name: MTEB TwentyNewsgroupsClustering
          type: mteb/twentynewsgroups-clustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 53.21105960597211
      - task:
          type: PairClassification
        dataset:
          name: MTEB TwitterSemEval2015
          type: mteb/twittersemeval2015-pairclassification
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 87.58419264469214
          - type: cos_sim_ap
            value: 78.55300004517404
          - type: cos_sim_f1
            value: 71.49673530889001
          - type: cos_sim_precision
            value: 68.20795400095831
          - type: cos_sim_recall
            value: 75.11873350923483
          - type: dot_accuracy
            value: 87.58419264469214
          - type: dot_ap
            value: 78.55297659559511
          - type: dot_f1
            value: 71.49673530889001
          - type: dot_precision
            value: 68.20795400095831
          - type: dot_recall
            value: 75.11873350923483
          - type: euclidean_accuracy
            value: 87.58419264469214
          - type: euclidean_ap
            value: 78.55300477331477
          - type: euclidean_f1
            value: 71.49673530889001
          - type: euclidean_precision
            value: 68.20795400095831
          - type: euclidean_recall
            value: 75.11873350923483
          - type: manhattan_accuracy
            value: 87.5663110210407
          - type: manhattan_ap
            value: 78.49982050876562
          - type: manhattan_f1
            value: 71.35488740722104
          - type: manhattan_precision
            value: 68.18946862226497
          - type: manhattan_recall
            value: 74.82849604221636
          - type: max_accuracy
            value: 87.58419264469214
          - type: max_ap
            value: 78.55300477331477
          - type: max_f1
            value: 71.49673530889001
      - task:
          type: PairClassification
        dataset:
          name: MTEB TwitterURLCorpus
          type: mteb/twitterurlcorpus-pairclassification
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 89.09069740365584
          - type: cos_sim_ap
            value: 86.22749303724757
          - type: cos_sim_f1
            value: 78.36863452005407
          - type: cos_sim_precision
            value: 76.49560117302053
          - type: cos_sim_recall
            value: 80.33569448721897
          - type: dot_accuracy
            value: 89.09069740365584
          - type: dot_ap
            value: 86.22750233655673
          - type: dot_f1
            value: 78.36863452005407
          - type: dot_precision
            value: 76.49560117302053
          - type: dot_recall
            value: 80.33569448721897
          - type: euclidean_accuracy
            value: 89.09069740365584
          - type: euclidean_ap
            value: 86.22749355597347
          - type: euclidean_f1
            value: 78.36863452005407
          - type: euclidean_precision
            value: 76.49560117302053
          - type: euclidean_recall
            value: 80.33569448721897
          - type: manhattan_accuracy
            value: 89.08293553770326
          - type: manhattan_ap
            value: 86.21913616084771
          - type: manhattan_f1
            value: 78.3907031479847
          - type: manhattan_precision
            value: 75.0352013517319
          - type: manhattan_recall
            value: 82.06036341238065
          - type: max_accuracy
            value: 89.09069740365584
          - type: max_ap
            value: 86.22750233655673
          - type: max_f1
            value: 78.3907031479847

nadeem1362/mxbai-embed-large-v1-Q4_K_M-GGUF

This model was converted to GGUF format from mixedbread-ai/mxbai-embed-large-v1 using llama.cpp via the ggml.ai's GGUF-my-repo space. Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew.

brew install ggerganov/ggerganov/llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo nadeem1362/mxbai-embed-large-v1-Q4_K_M-GGUF --model mxbai-embed-large-v1.Q4_K_M.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo nadeem1362/mxbai-embed-large-v1-Q4_K_M-GGUF --model mxbai-embed-large-v1.Q4_K_M.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

git clone https://github.com/ggerganov/llama.cpp &&             cd llama.cpp &&             make &&             ./main -m mxbai-embed-large-v1.Q4_K_M.gguf -n 128