|
--- |
|
license: bsd-3-clause |
|
language: |
|
- zh |
|
- en |
|
- id |
|
- ja |
|
- es |
|
--- |
|
|
|
# TUBELEX FastText Word Embeddings |
|
|
|
FastText Word Embeddings trained on the TUBELEX YouTube subtitle corpora. We use the 300-dimensional [fastText](https://github.com/facebookresearch/fastText) CBOW model with position weights, 10 negative samples, 10 epochs, character 5-grams (other paramters: default) ([Grave et al., 2018](https://aclanthology.org/L18-1550)). |
|
|
|
We provide both '\*.bin' files (for fastText) and '\*.vec' files that follow the common Word2vec format, and can be used for instance with the `gensim` package. |
|
|
|
# What is TUBELEX? |
|
|
|
TUBELEX is a YouTube subtitle corpus currently available for Chinese, English, Indonesian, Japanese, and Spanish. |
|
|
|
- TODO: paper link |
|
- [KenLM n-gram models](https://huggingface.co/naist-nlp/tubelex-kenlm) |
|
- [word frequencies and code](https://github.com/naist-nlp/tubelex) |
|
|
|
# Usage |
|
|
|
To download and use the fastText models in Python, first install dependencies: |
|
|
|
``` |
|
pip install huggingface_hub |
|
pip install fasttext |
|
``` |
|
|
|
You can then use e.g. the English (`en`) model in the following way: |
|
|
|
``` |
|
import fasttext |
|
from huggingface_hub import hf_hub_download |
|
|
|
model_file = hf_hub_download(repo_id='naist-nlp/tubelex-kenlm', filename='tubelex-en.bin') |
|
model = fasttext.load_model(model_file) |
|
|
|
print(model['koala']) |
|
``` |
|
|