|
--- |
|
license: mit |
|
base_model: shi-labs/nat-mini-in1k-224 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- image_folder |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: nat-mini-in1k-224-finetuned-breakhis |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: image_folder |
|
type: image_folder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9669421487603306 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9612429172231991 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# nat-mini-in1k-224-finetuned-breakhis |
|
|
|
This model is a fine-tuned version of [shi-labs/nat-mini-in1k-224](https://huggingface.co/shi-labs/nat-mini-in1k-224) on the image_folder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0983 |
|
- Accuracy: 0.9669 |
|
- F1: 0.9612 |
|
- Roc Auc: 0.9648 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Roc Auc | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:-------:| |
|
| 0.3247 | 0.99 | 59 | 0.2084 | 0.9157 | 0.8968 | 0.8836 | |
|
| 0.1338 | 2.0 | 119 | 0.1686 | 0.9355 | 0.9266 | 0.9437 | |
|
| 0.1078 | 2.99 | 178 | 0.0986 | 0.9694 | 0.9636 | 0.9597 | |
|
| 0.0795 | 4.0 | 238 | 0.0957 | 0.9719 | 0.9668 | 0.9660 | |
|
| 0.0522 | 4.96 | 295 | 0.0983 | 0.9669 | 0.9612 | 0.9648 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.1 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.15.2 |
|
|