13-clustered_aug / README.md
nandysoham16's picture
Training in progress epoch 1
31db0bb
|
raw
history blame
2.21 kB
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: nandysoham16/13-clustered_aug
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# nandysoham16/13-clustered_aug
This model is a fine-tuned version of [Rocketknight1/distilbert-base-uncased-finetuned-squad](https://huggingface.co/Rocketknight1/distilbert-base-uncased-finetuned-squad) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.8354
- Train End Logits Accuracy: 0.7665
- Train Start Logits Accuracy: 0.7283
- Validation Loss: 0.8937
- Validation End Logits Accuracy: 0.7640
- Validation Start Logits Accuracy: 0.7151
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 714, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
|:----------:|:-------------------------:|:---------------------------:|:---------------:|:------------------------------:|:--------------------------------:|:-----:|
| 1.2480 | 0.6721 | 0.6264 | 0.9732 | 0.7479 | 0.6899 | 0 |
| 0.8354 | 0.7665 | 0.7283 | 0.8937 | 0.7640 | 0.7151 | 1 |
### Framework versions
- Transformers 4.26.0
- TensorFlow 2.9.2
- Datasets 2.9.0
- Tokenizers 0.13.2