File size: 1,801 Bytes
085a5c8 8b1c79e 085a5c8 1d1a5c1 6c3f574 1d1a5c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
---
license: mit
datasets:
- nanelimon/insult-dataset
language:
- tr
pipeline_tag: text-classification
---
## About the model
It is a Turkish bert-based model created to determine the types of bullying that people use against each other in social media.
Included classes;
- Nötr
- Kızdırma/Hakaret
- Cinsiyetçilik
- Irkçılık
3388 tweets were used in the training of the model. Accordingly, the success rates in education are as follows;
| | INSULT | OTHER | PROFANITY | RACIST | SEXIST |
| ------ | ------ | ------ | ------ | ------ | ------ |
| Precision | 0.901 | 0.924 | 0.978 | 1.000 | 0.980 |
| Recall | 0.920 | 0.980 | 0.900 | 0.980 | 1.000 |
| F1 Score | 0.910 | 0.9514 | 0.937 | 0.989 | 0.990 |
- F-Score: 0.9559690799177005
- Recall: 0.9559999999999998
- Precision: 0.9570284225256961
- Accuracy: 0.956
## Dependency
pip install torch torchvision torchaudio
pip install tf-keras
pip install transformers
pip install tensorflow
## Example
```sh
from transformers import AutoTokenizer, TextClassificationPipeline, TFBertForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("nanelimon/bert-base-turkish-offensive")
model = TFBertForSequenceClassification.from_pretrained("nanelimon/bert-base-turkish-offensive", from_pt=True)
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True, top_k=2)
print(pipe('Bu bir denemedir hadi sende dene!'))
```
Result;
```sh
[[{'label': 'OTHER', 'score': 1.000}, {'label': 'INSULT', 'score': 0.000}]]
```
- label= It shows which class the sent Turkish text belongs to according to the model.
- score= It shows the compliance rate of the Turkish text sent to the label found.
## Authors
- Seyma SARIGIL: [email protected]
## License
gpl-3.0
**Free Software, Hell Yeah!** |