|
--- |
|
license: mit |
|
datasets: |
|
- nanelimon/insult-dataset |
|
language: |
|
- tr |
|
pipeline_tag: text-classification |
|
--- |
|
|
|
# About the model |
|
This model is designed for text classification, specifically for identifying offensive content in Turkish text. The model classifies text into five categories: INSULT, OTHER, PROFANITY, RACIST, and SEXIST. |
|
|
|
## Model Metrics |
|
|
|
| | INSULT | OTHER | PROFANITY | RACIST | SEXIST | |
|
| ------ | ------ | ------ | ------ | ------ | ------ | |
|
| Precision | 0.901 | 0.924 | 0.978 | 1.000 | 0.980 | |
|
| Recall | 0.920 | 0.980 | 0.900 | 0.980 | 1.000 | |
|
| F1 Score | 0.910 | 0.9514 | 0.937 | 0.989 | 0.990 | |
|
|
|
- F-Score: 0.9559690799177005 |
|
- Recall: 0.9559999999999998 |
|
- Precision: 0.9570284225256961 |
|
- Accuracy: 0.956 |
|
|
|
## Training Information |
|
- Device : macOS 14.5 23F79 arm64 | GPU: Apple M2 Max | Memory: 5840MiB / 32768MiB |
|
- Training completed in 0:22:54 (hh:mm:ss) |
|
- Optimizer: AdamW |
|
- learning_rate: 2e-5 |
|
- eps: 1e-8 |
|
- epochs: 10 |
|
- Batch size: 64 |
|
|
|
## Dependency |
|
```sh |
|
pip install torch torchvision torchaudio |
|
pip install tf-keras |
|
pip install transformers |
|
pip install tensorflow |
|
``` |
|
## Example |
|
```sh |
|
from transformers import AutoTokenizer, TFAutoModelForSequenceClassification, TextClassificationPipeline |
|
|
|
# Load the tokenizer and model |
|
model_name = "nanelimon/bert-base-turkish-offensive" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = TFAutoModelForSequenceClassification.from_pretrained(model_name) |
|
|
|
# Create the pipeline |
|
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True, top_k=2) |
|
|
|
# Test the pipeline |
|
print(pipe('Bu bir denemedir hadi sende dene!')) |
|
|
|
``` |
|
Result; |
|
```sh |
|
[[{'label': 'OTHER', 'score': 1.000}, {'label': 'INSULT', 'score': 0.000}]] |
|
``` |
|
- label= It shows which class the sent Turkish text belongs to according to the model. |
|
- score= It shows the compliance rate of the Turkish text sent to the label found. |
|
|
|
## Authors |
|
- Seyma SARIGIL: [email protected] |
|
|
|
## License |
|
|
|
gpl-3.0 |
|
|
|
**Free Software, Hell Yeah!** |