SentenceTransformer based on BAAI/bge-small-en
This is a sentence-transformers model finetuned from BAAI/bge-small-en. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'What is the website to find services for customers purchasing from a commercial reseller?',
'Parts and Materials\nHPE will provide HPE-supported replacement parts and materials necessary to maintain the covered hardware\nproduct in operating condition, including parts and materials for available and recommended engineering\nimprovements. \xa0\nParts and components that have reached their maximum supported lifetime and/or the maximum usage\nlimitations as set forth in the manufacturer\'s operating manual, product quick-specs, or the technical product\ndata sheet will not be provided, repaired, or replaced as part of these services.\n\xa0\nHow to Purchase Services\nServices are sold by Hewlett Packard Enterprise and Hewlett Packard Enterprise Authorized Service Partners:\nServices for customers purchasing from HPE or an enterprise reseller are quoted using HPE order\nconfiguration tools.\nCustomers purchasing from a commercial reseller can find services at\nhttps://ssc.hpe.com/portal/site/ssc/\n\xa0\nAI Powered and Digitally Enabled Support Experience\nAchieve faster time to resolution with access to product-specific resources and expertise through a digital and\ndata driven customer experience \xa0\nSign into the HPE Support Center experience, featuring streamlined self-serve case creation and\nmanagement capabilities with inline knowledge recommendations. You will also find personalized task alerts\nand powerful troubleshooting support through an intelligent virtual agent with seamless transition when needed\nto a live support agent. \xa0\nhttps://support.hpe.com/hpesc/public/home/signin\nConsume IT On Your Terms\nHPE GreenLake edge-to-cloud platform brings the cloud experience directly to your apps and data wherever\nthey are-the edge, colocations, or your data center. It delivers cloud services for on-premises IT infrastructure\nspecifically tailored to your most demanding workloads. With a pay-per-use, scalable, point-and-click self-\nservice experience that is managed for you, HPE GreenLake edge-to-cloud platform accelerates digital\ntransformation in a distributed, edge-to-cloud world.\nGet faster time to market\nSave on TCO, align costs to business\nScale quickly, meet unpredictable demand\nSimplify IT operations across your data centers and clouds\nTo learn more about HPE Services, please contact your Hewlett Packard Enterprise sales representative or\nHewlett Packard Enterprise Authorized Channel Partner. \xa0 Contact information for a representative in your area\ncan be found at "Contact HPE" https://www.hpe.com/us/en/contact-hpe.html \xa0\nFor more information\nhttp://www.hpe.com/services\nQuickSpecs\nHPE Cray XD675\nService and Support\nDA - 17239\xa0\xa0\xa0Worldwide QuickSpecs — Version 4 — 8/19/2024\nPage\xa0 13',
'HPE Cray XD675 Server Top View\nItem Description \xa0 \xa0\n1. 8x AMD MI300X OAM Accelerator \xa0 \xa0\n\xa0\nQuickSpecs\nHPE Cray XD675\nOverview\nDA - 17239\xa0\xa0\xa0Worldwide QuickSpecs — Version 4 — 8/19/2024\nPage\xa0 2',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Evaluated with
InformationRetrievalEvaluator
Metric | Value |
---|---|
cosine_accuracy@1 | 0.4857 |
cosine_accuracy@3 | 0.8048 |
cosine_accuracy@5 | 0.8619 |
cosine_accuracy@10 | 0.9095 |
cosine_precision@1 | 0.4857 |
cosine_precision@3 | 0.2683 |
cosine_precision@5 | 0.1724 |
cosine_precision@10 | 0.091 |
cosine_recall@1 | 0.4857 |
cosine_recall@3 | 0.8048 |
cosine_recall@5 | 0.8619 |
cosine_recall@10 | 0.9095 |
cosine_ndcg@10 | 0.7184 |
cosine_mrr@10 | 0.6552 |
cosine_map@100 | 0.6599 |
dot_accuracy@1 | 0.4857 |
dot_accuracy@3 | 0.8048 |
dot_accuracy@5 | 0.8619 |
dot_accuracy@10 | 0.9095 |
dot_precision@1 | 0.4857 |
dot_precision@3 | 0.2683 |
dot_precision@5 | 0.1724 |
dot_precision@10 | 0.091 |
dot_recall@1 | 0.4857 |
dot_recall@3 | 0.8048 |
dot_recall@5 | 0.8619 |
dot_recall@10 | 0.9095 |
dot_ndcg@10 | 0.7184 |
dot_mrr@10 | 0.6552 |
dot_map@100 | 0.6599 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,221 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 3 tokens
- mean: 22.72 tokens
- max: 80 tokens
- min: 36 tokens
- mean: 328.94 tokens
- max: 512 tokens
- Samples:
sentence_0 sentence_1 What is the maximum number of Apollo n2X00 series chassis that can fit in a 42U rack?
HPE Apollo 2000 Gen10 Plus System
HPE is bringing the power of supercomputing to datacenters of any size with the Apollo 2000 Gen10 Plus
system.
The HPE Apollo 2000 Gen10 Plus System is a dense, multi-server platform that packs incredible
performance and workload flexibility into a small datacenter space, while delivering the efficiencies of a
shared infrastructure. It is designed to provide a bridge to scale-out architecture for traditional data centers,
so enterprise and SME customers can achieve the space-saving value of density-optimized infrastructure in a
cost-effective and non-disruptive manner.
The Apollo 2000 Gen10 Plus offers a density optimized, shared infrastructure with a flexible scale-out
architecture to support a variety of workloads from remote site systems to large HPC clusters and everything
in between. HPE iLO5 provides built-in firmware-level server security with silicon root of trust. It can be
deployed cost-effectively starting with a single 2U, shared infrastructure chassis and configured with a variety
of storage options to meet the configuration needs of a wide variety of scale-out workloads.
The Apollo 2000 Gen10 Plus System delivers up to four times the density of a traditional rack mount server
with up to four ProLiant Gen10 Plus independent servers per 2U mounted in standard racks with rear-aisle
serviceability access. A 42U rack fits up to 20 Apollo n2X00 series chassis accommodating up to 80 servers
per rack.
What's New
Support for up to four Xilinx Alveo U50 single wide GPU's in XL290n node.
Enables a robust stack of Intel 3 rd generation Xeon Scalable Processors to increase your power density
and increase datacenter efficiency. Intel AVX-512 * feature increases memory bandwidth, improves
frequency management to enable greater performance. Also Speed Select Technology (SST) allows
Core count and frequency flexibility *
The Direct Liquid Cooling (DLC) option for the Apollo 2000 Gen10 Plus System comes ready to plug and
play. Choose from either CPU only or CPU plus memory cooling options.
Enables flexible choices with Intel 3 rd Generation Xeon Scalable Processors and AMD 2 nd and 3 rd
generation EPYC Processors
New flexible infrastructure offers multiple storage options, 8 memory channels and 3200 MT/s memory,
PCIe Gen4 and support for processors over 250W for improved application performance.
Complete software portfolio for all customer workloads, for node to rack management, including
comprehensive integrated cluster management software
Secure from the start with firmware anchored into silicon with iLO5 and silicon root of trust for the
highest level of system security
Notes: *Available on select processors
QuickSpecs
HPE Apollo 2000 Gen10 Plus System
Overview
DA - 16526 Worldwide QuickSpecs — Version 41 — 7/1/2024
Page 1What is the maximum number of independent servers that can be mounted in a single 2U Apollo 2000 Gen10 Plus System chassis?
HPE Apollo 2000 Gen10 Plus System
HPE is bringing the power of supercomputing to datacenters of any size with the Apollo 2000 Gen10 Plus
system.
The HPE Apollo 2000 Gen10 Plus System is a dense, multi-server platform that packs incredible
performance and workload flexibility into a small datacenter space, while delivering the efficiencies of a
shared infrastructure. It is designed to provide a bridge to scale-out architecture for traditional data centers,
so enterprise and SME customers can achieve the space-saving value of density-optimized infrastructure in a
cost-effective and non-disruptive manner.
The Apollo 2000 Gen10 Plus offers a density optimized, shared infrastructure with a flexible scale-out
architecture to support a variety of workloads from remote site systems to large HPC clusters and everything
in between. HPE iLO5 provides built-in firmware-level server security with silicon root of trust. It can be
deployed cost-effectively starting with a single 2U, shared infrastructure chassis and configured with a variety
of storage options to meet the configuration needs of a wide variety of scale-out workloads.
The Apollo 2000 Gen10 Plus System delivers up to four times the density of a traditional rack mount server
with up to four ProLiant Gen10 Plus independent servers per 2U mounted in standard racks with rear-aisle
serviceability access. A 42U rack fits up to 20 Apollo n2X00 series chassis accommodating up to 80 servers
per rack.
What's New
Support for up to four Xilinx Alveo U50 single wide GPU's in XL290n node.
Enables a robust stack of Intel 3 rd generation Xeon Scalable Processors to increase your power density
and increase datacenter efficiency. Intel AVX-512 * feature increases memory bandwidth, improves
frequency management to enable greater performance. Also Speed Select Technology (SST) allows
Core count and frequency flexibility *
The Direct Liquid Cooling (DLC) option for the Apollo 2000 Gen10 Plus System comes ready to plug and
play. Choose from either CPU only or CPU plus memory cooling options.
Enables flexible choices with Intel 3 rd Generation Xeon Scalable Processors and AMD 2 nd and 3 rd
generation EPYC Processors
New flexible infrastructure offers multiple storage options, 8 memory channels and 3200 MT/s memory,
PCIe Gen4 and support for processors over 250W for improved application performance.
Complete software portfolio for all customer workloads, for node to rack management, including
comprehensive integrated cluster management software
Secure from the start with firmware anchored into silicon with iLO5 and silicon root of trust for the
highest level of system security
Notes: *Available on select processors
QuickSpecs
HPE Apollo 2000 Gen10 Plus System
Overview
DA - 16526 Worldwide QuickSpecs — Version 41 — 7/1/2024
Page 1What is the processor type supported by the HPE Apollo n2800 Gen10 Plus 24 SFF Flexible CTO chassis?
HPE Apollo n2600 Gen10 Plus SFF CTO Chassis supports both Intel and AMD based server nodes
HPE Apollo n2800 Gen10 Plus 24 SFF Flexible CTO chassis supports Intel based server nodes
Backplane selection determines number and type of drives supported
Item Description Item Description
1 SFF hot-plug drives 3 Health LED
2 Serial number/iLO information pull tab 4 UID button LED
Chassis Rear Panel Components - 4 x 1U nodes
Item Description Item Description
1 Server 3 & 4 4 iLO Ports
2 HPE Apollo Platform Manager (APM) 2.0 port 5 Server 1 & 2
3 Power supply 1 & 2 6 Optional Rack Consolidation Module (RCM)
QuickSpecs
HPE Apollo 2000 Gen10 Plus System
Overview
DA - 16526 Worldwide QuickSpecs — Version 41 — 7/1/2024
Page 2 - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 256per_device_eval_batch_size
: 256num_train_epochs
: 20multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 256per_device_eval_batch_size
: 256per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 20max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | cosine_map@100 |
---|---|---|
1.0 | 7 | 0.4864 |
2.0 | 14 | 0.5209 |
3.0 | 21 | 0.5131 |
4.0 | 28 | 0.5047 |
5.0 | 35 | 0.5480 |
6.0 | 42 | 0.5808 |
7.0 | 49 | 0.5950 |
7.1429 | 50 | 0.5975 |
8.0 | 56 | 0.6145 |
9.0 | 63 | 0.6268 |
10.0 | 70 | 0.6292 |
11.0 | 77 | 0.6385 |
12.0 | 84 | 0.6445 |
13.0 | 91 | 0.6279 |
14.0 | 98 | 0.6296 |
14.2857 | 100 | 0.6321 |
15.0 | 105 | 0.6317 |
16.0 | 112 | 0.6401 |
17.0 | 119 | 0.6590 |
18.0 | 126 | 0.6562 |
19.0 | 133 | 0.6599 |
Framework Versions
- Python: 3.11.8
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.2.2+cu121
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 30
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for nanos-hpe/bge-small-qs
Base model
BAAI/bge-small-enEvaluation results
- Cosine Accuracy@1 on Unknownself-reported0.486
- Cosine Accuracy@3 on Unknownself-reported0.805
- Cosine Accuracy@5 on Unknownself-reported0.862
- Cosine Accuracy@10 on Unknownself-reported0.910
- Cosine Precision@1 on Unknownself-reported0.486
- Cosine Precision@3 on Unknownself-reported0.268
- Cosine Precision@5 on Unknownself-reported0.172
- Cosine Precision@10 on Unknownself-reported0.091
- Cosine Recall@1 on Unknownself-reported0.486
- Cosine Recall@3 on Unknownself-reported0.805