nielsr's picture
nielsr HF staff
Add vision tag
b55eeb4
metadata
tags:
  - image-classification
  - vision
  - pytorch
license: apache-2.0
datasets:
  - cifar10
metrics:
  - accuracy
thumbnail: >-
  https://avatars3.githubusercontent.com/u/32437151?s=460&u=4ec59abc8d21d5feea3dab323d23a5860e6996a4&v=4

Vision Transformer Fine Tuned on CIFAR10

Vision Transformer (ViT) model pre-trained on ImageNet-21k (14 million images, 21,843 classes) and fine-tuned on CIFAR10 at resolution 224x224.

Check out the code at my my Github repo.

Usage

from transformers import ViTFeatureExtractor, ViTForImageClassification
from PIL import Image
import requests

url = 'https://www.cs.toronto.edu/~kriz/cifar-10-sample/dog10.png'
image = Image.open(requests.get(url, stream=True).raw)
feature_extractor = ViTFeatureExtractor.from_pretrained('nateraw/vit-base-patch16-224-cifar10')
model = ViTForImageClassification.from_pretrained('nateraw/vit-base-patch16-224-cifar10')
inputs = feature_extractor(images=image, return_tensors="pt")
outputs = model(**inputs)
preds = outputs.logits.argmax(dim=1)

classes = [
    'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'
]
classes[preds[0]]

Model description

The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Images are presented to the model as a sequence of fixed-size patches (resolution 16x16), which are linearly embedded. One also adds a [CLS] token to the beginning of a sequence to use it for classification tasks. One also adds absolute position embeddings before feeding the sequence to the layers of the Transformer encoder. Note that this model does not provide any fine-tuned heads, as these were zero'd by Google researchers. However, the model does include the pre-trained pooler, which can be used for downstream tasks (such as image classification).

By pre-training the model, it learns an inner representation of images that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled images for instance, you can train a standard classifier by placing a linear layer on top of the pre-trained encoder. One typically places a linear layer on top of the [CLS] token, as the last hidden state of this token can be seen as a representation of an entire image.