Text Models
Collection
Text generation models with less refusals
โข
2 items
โข
Updated
โข
1
Abliterated version of Qwen2-7B-Instruct using failspy's notebook. The model's strongest refusal directions have been ablated via weight orthogonalization, but the model may still refuse your request, misunderstand your intent, or provide unsolicited advice regarding ethics or safety.
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "natong19/Qwen2-7B-Instruct-abliterated"
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=256
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
Evaluation framework: lm-evaluation-harness 0.4.2
Datasets | Qwen2-7B-Instruct | Qwen2-7B-Instruct-abliterated |
---|---|---|
ARC (25-shot) | 62.5 | 62.5 |
GSM8K (5-shot) | 73.0 | 72.2 |
HellaSwag (10-shot) | 81.8 | 81.7 |
MMLU (5-shot) | 70.7 | 70.5 |
TruthfulQA (0-shot) | 57.3 | 55.0 |
Winogrande (5-shot) | 76.2 | 77.4 |