DUSt3R: Geometric 3D Vision Made Easy

@inproceedings{dust3r_cvpr24,
      title={DUSt3R: Geometric 3D Vision Made Easy}, 
      author={Shuzhe Wang and Vincent Leroy and Yohann Cabon and Boris Chidlovskii and Jerome Revaud},
      booktitle = {CVPR},
      year = {2024}
}

@misc{dust3r_arxiv23,
      title={DUSt3R: Geometric 3D Vision Made Easy}, 
      author={Shuzhe Wang and Vincent Leroy and Yohann Cabon and Boris Chidlovskii and Jerome Revaud},
      year={2023},
      eprint={2312.14132},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2312.14132}, 
}

License

The code is distributed under the CC BY-NC-SA 4.0 License. See LICENSE for more information. For the checkpoints, make sure to agree to the license of all the public training datasets and base checkpoints we used, in addition to CC-BY-NC-SA 4.0. See section: Our Hyperparameters for details.

Model info

Gihub page: https://github.com/naver/dust3r/ Project page: https://dust3r.europe.naverlabs.com/

Modelname Training resolutions Head Encoder Decoder
DUSt3R_ViTLarge_BaseDecoder_512_dpt 512x384, 512x336, 512x288, 512x256, 512x160 DPT ViT-L ViT-B

How to use

First, install dust3r. To load the model:

from dust3r.model import AsymmetricCroCo3DStereo
import torch

model = AsymmetricCroCo3DStereo.from_pretrained("naver/DUSt3R_ViTLarge_BaseDecoder_512_dpt")

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
Downloads last month
86,511
Safetensors
Model size
571M params
Tensor type
F32
Β·
Inference API
Inference API (serverless) does not yet support dust3r models for this pipeline type.

Spaces using naver/DUSt3R_ViTLarge_BaseDecoder_512_dpt 5

Collection including naver/DUSt3R_ViTLarge_BaseDecoder_512_dpt