yocabon commited on
Commit
ea19651
1 Parent(s): 55c9c80

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -5
README.md CHANGED
@@ -1,12 +1,47 @@
1
  ---
2
- library_name: dust3r
3
  tags:
4
- - image-to-3d
5
  - pytorch_model_hub_mixin
6
  - model_hub_mixin
 
 
7
  repo_url: https://github.com/naver/dust3r
8
  ---
9
 
10
- This model has been pushed to the Hub using **dust3r**:
11
- - Repo: https://github.com/naver/dust3r
12
- - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
 
2
  tags:
 
3
  - pytorch_model_hub_mixin
4
  - model_hub_mixin
5
+ - image-to-3d
6
+ library_name: dust3r
7
  repo_url: https://github.com/naver/dust3r
8
  ---
9
 
10
+ ## DUSt3R: Geometric 3D Vision Made Easy
11
+
12
+ ```bibtex
13
+ @inproceedings{dust3r_cvpr24,
14
+ title={DUSt3R: Geometric 3D Vision Made Easy},
15
+ author={Shuzhe Wang and Vincent Leroy and Yohann Cabon and Boris Chidlovskii and Jerome Revaud},
16
+ booktitle = {CVPR},
17
+ year = {2024}
18
+ }
19
+ ```
20
+
21
+ # License
22
+ The code is distributed under the CC BY-NC-SA 4.0 License. See [LICENSE](https://github.com/naver/dust3r/blob/main/LICENSE) for more information.
23
+ For the checkpoints, make sure to agree to the license of all the public training datasets and base checkpoints we used, in addition to CC-BY-NC-SA 4.0. See [section: Our Hyperparameters](https://github.com/naver/dust3r?tab=readme-ov-file#our-hyperparameters) for details.
24
+
25
+ # Model info
26
+
27
+ Gihub page: https://github.com/naver/dust3r/
28
+ Project page: https://dust3r.europe.naverlabs.com/
29
+
30
+ | Modelname | Training resolutions | Head | Encoder | Decoder |
31
+ |-------------|----------------------|------|---------|---------|
32
+ | DUSt3R_ViTLarge_BaseDecoder_512_dpt | 512x384, 512x336, 512x288, 512x256, 512x160 | Linear | ViT-L | ViT-B |
33
+
34
+ # How to use
35
+
36
+ First, [install dust3r](https://github.com/naver/dust3r?tab=readme-ov-file#installation).
37
+ To load the model:
38
+
39
+ ```python
40
+ from dust3r.model import AsymmetricCroCo3DStereo
41
+ import torch
42
+
43
+ model = AsymmetricCroCo3DStereo.from_pretrained("naver/DUSt3R_ViTLarge_BaseDecoder_512_dpt")
44
+
45
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
46
+ model.to(device)
47
+ ```