lrodrigues's picture
upload
5694aea
---
datasets:
- squad_v2
language: en
license: mit
pipeline_tag: question-answering
tags:
- deberta
- deberta-v3
model-index:
- name: navteca/deberta-v3-base-squad2
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_v2
type: squad_v2
config: squad_v2
split: validation
metrics:
- name: Exact Match
type: exact_match
value: 88.0876
verified: true
- name: F1
type: f1
value: 91.1623
verified: true
- task:
type: question-answering
name: Question Answering
dataset:
name: squad
type: squad
config: plain_text
split: validation
metrics:
- name: Exact Match
type: exact_match
value: 89.2366
verified: true
- name: F1
type: f1
value: 95.0569
verified: true
---
# Deberta v3 large model for QA (SQuAD 2.0)
This is the [deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering.
## Training Data
The models have been trained on the [SQuAD 2.0](https://rajpurkar.github.io/SQuAD-explorer/) dataset.
It can be used for question answering task.
## Usage and Performance
The trained model can be used like this:
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
# Load model & tokenizer
deberta_model = AutoModelForQuestionAnswering.from_pretrained('navteca/deberta-v3-large-squad2')
deberta_tokenizer = AutoTokenizer.from_pretrained('navteca/deberta-v3-large-squad2')
# Get predictions
nlp = pipeline('question-answering', model=deberta_model, tokenizer=deberta_tokenizer)
result = nlp({
'question': 'How many people live in Berlin?',
'context': 'Berlin had a population of 3,520,031 registered inhabitants in an area of 891.82 square kilometers.'
})
print(result)
#{
# "answer": "3,520,031"
# "end": 36,
# "score": 0.96186668,
# "start": 27,
#}
```
## Author
[deepset](http://deepset.ai/)