nazim-ks commited on
Commit
6dc1519
·
verified ·
1 Parent(s): b6cc750

Model save

Browse files
Files changed (3) hide show
  1. README.md +20 -20
  2. all_results.json +4 -4
  3. train_results.json +4 -4
README.md CHANGED
@@ -24,10 +24,10 @@ model-index:
24
  metrics:
25
  - name: Accuracy
26
  type: accuracy
27
- value: 0.9428571428571428
28
  - name: F1
29
  type: f1
30
- value: 0.9442260195944405
31
  ---
32
 
33
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -37,9 +37,9 @@ should probably proofread and complete it, then remove this comment. -->
37
 
38
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
39
  It achieves the following results on the evaluation set:
40
- - Loss: 0.1971
41
- - Accuracy: 0.9429
42
- - F1: 0.9442
43
 
44
  ## Model description
45
 
@@ -62,7 +62,7 @@ The following hyperparameters were used during training:
62
  - train_batch_size: 16
63
  - eval_batch_size: 16
64
  - seed: 42
65
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
  - lr_scheduler_type: linear
67
  - num_epochs: 10
68
 
@@ -70,21 +70,21 @@ The following hyperparameters were used during training:
70
 
71
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
72
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
73
- | 0.073 | 1.0 | 42 | 0.2416 | 0.9238 | 0.9250 |
74
- | 0.061 | 2.0 | 84 | 0.2160 | 0.9333 | 0.9345 |
75
- | 0.0543 | 3.0 | 126 | 0.2114 | 0.9429 | 0.9432 |
76
- | 0.0497 | 4.0 | 168 | 0.2028 | 0.9429 | 0.9442 |
77
- | 0.046 | 5.0 | 210 | 0.1985 | 0.9429 | 0.9442 |
78
- | 0.0435 | 6.0 | 252 | 0.2009 | 0.9429 | 0.9442 |
79
- | 0.0414 | 7.0 | 294 | 0.1976 | 0.9429 | 0.9442 |
80
- | 0.0402 | 8.0 | 336 | 0.1978 | 0.9429 | 0.9442 |
81
- | 0.0391 | 9.0 | 378 | 0.1967 | 0.9429 | 0.9442 |
82
- | 0.0385 | 10.0 | 420 | 0.1971 | 0.9429 | 0.9442 |
83
 
84
 
85
  ### Framework versions
86
 
87
- - Transformers 4.45.2
88
- - Pytorch 2.4.1+cu121
89
- - Datasets 3.0.1
90
- - Tokenizers 0.20.0
 
24
  metrics:
25
  - name: Accuracy
26
  type: accuracy
27
+ value: 0.9047619047619048
28
  - name: F1
29
  type: f1
30
+ value: 0.9032269317983602
31
  ---
32
 
33
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
37
 
38
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
39
  It achieves the following results on the evaluation set:
40
+ - Loss: 0.8131
41
+ - Accuracy: 0.9048
42
+ - F1: 0.9032
43
 
44
  ## Model description
45
 
 
62
  - train_batch_size: 16
63
  - eval_batch_size: 16
64
  - seed: 42
65
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
66
  - lr_scheduler_type: linear
67
  - num_epochs: 10
68
 
 
70
 
71
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
72
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
73
+ | 2.0824 | 1.0 | 42 | 1.9709 | 0.4476 | 0.3861 |
74
+ | 1.77 | 2.0 | 84 | 1.7102 | 0.6952 | 0.7022 |
75
+ | 1.4691 | 3.0 | 126 | 1.4748 | 0.8476 | 0.8506 |
76
+ | 1.198 | 4.0 | 168 | 1.2657 | 0.8952 | 0.8954 |
77
+ | 0.9858 | 5.0 | 210 | 1.1113 | 0.9048 | 0.9035 |
78
+ | 0.819 | 6.0 | 252 | 0.9877 | 0.9048 | 0.9032 |
79
+ | 0.6969 | 7.0 | 294 | 0.9090 | 0.9048 | 0.9034 |
80
+ | 0.6209 | 8.0 | 336 | 0.8524 | 0.9048 | 0.9032 |
81
+ | 0.5651 | 9.0 | 378 | 0.8226 | 0.9048 | 0.9032 |
82
+ | 0.5326 | 10.0 | 420 | 0.8131 | 0.9048 | 0.9032 |
83
 
84
 
85
  ### Framework versions
86
 
87
+ - Transformers 4.46.2
88
+ - Pytorch 2.5.1+cu124
89
+ - Datasets 3.1.0
90
+ - Tokenizers 0.20.3
all_results.json CHANGED
@@ -7,8 +7,8 @@
7
  "eval_samples_per_second": 37.133,
8
  "eval_steps_per_second": 4.951,
9
  "total_flos": 5.130291560557363e+17,
10
- "train_loss": 0.0,
11
- "train_runtime": 548.693,
12
- "train_samples_per_second": 12.065,
13
- "train_steps_per_second": 1.513
14
  }
 
7
  "eval_samples_per_second": 37.133,
8
  "eval_steps_per_second": 4.951,
9
  "total_flos": 5.130291560557363e+17,
10
+ "train_loss": 1.0611230804806664,
11
+ "train_runtime": 556.247,
12
+ "train_samples_per_second": 11.901,
13
+ "train_steps_per_second": 0.755
14
  }
train_results.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
  "epoch": 10.0,
3
  "total_flos": 5.130291560557363e+17,
4
- "train_loss": 0.0,
5
- "train_runtime": 548.693,
6
- "train_samples_per_second": 12.065,
7
- "train_steps_per_second": 1.513
8
  }
 
1
  {
2
  "epoch": 10.0,
3
  "total_flos": 5.130291560557363e+17,
4
+ "train_loss": 1.0611230804806664,
5
+ "train_runtime": 556.247,
6
+ "train_samples_per_second": 11.901,
7
+ "train_steps_per_second": 0.755
8
  }