nazim-ks commited on
Commit
b6cc750
·
verified ·
1 Parent(s): 25880d0

Training in progress, step 420

Browse files
README.md CHANGED
@@ -1,90 +1,90 @@
1
- ---
2
- library_name: transformers
3
- license: apache-2.0
4
- base_model: google/vit-base-patch16-224-in21k
5
- tags:
6
- - generated_from_trainer
7
- datasets:
8
- - imagefolder
9
- metrics:
10
- - accuracy
11
- - f1
12
- model-index:
13
- - name: got-model
14
- results:
15
- - task:
16
- name: Image Classification
17
- type: image-classification
18
- dataset:
19
- name: imagefolder
20
- type: imagefolder
21
- config: default
22
- split: test
23
- args: default
24
- metrics:
25
- - name: Accuracy
26
- type: accuracy
27
- value: 0.9428571428571428
28
- - name: F1
29
- type: f1
30
- value: 0.9442260195944405
31
- ---
32
-
33
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
34
- should probably proofread and complete it, then remove this comment. -->
35
-
36
- # got-model
37
-
38
- This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
39
- It achieves the following results on the evaluation set:
40
- - Loss: 0.1971
41
- - Accuracy: 0.9429
42
- - F1: 0.9442
43
-
44
- ## Model description
45
-
46
- More information needed
47
-
48
- ## Intended uses & limitations
49
-
50
- More information needed
51
-
52
- ## Training and evaluation data
53
-
54
- More information needed
55
-
56
- ## Training procedure
57
-
58
- ### Training hyperparameters
59
-
60
- The following hyperparameters were used during training:
61
- - learning_rate: 2e-05
62
- - train_batch_size: 16
63
- - eval_batch_size: 16
64
- - seed: 42
65
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
- - lr_scheduler_type: linear
67
- - num_epochs: 10
68
-
69
- ### Training results
70
-
71
- | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
72
- |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
73
- | 0.073 | 1.0 | 42 | 0.2416 | 0.9238 | 0.9250 |
74
- | 0.061 | 2.0 | 84 | 0.2160 | 0.9333 | 0.9345 |
75
- | 0.0543 | 3.0 | 126 | 0.2114 | 0.9429 | 0.9432 |
76
- | 0.0497 | 4.0 | 168 | 0.2028 | 0.9429 | 0.9442 |
77
- | 0.046 | 5.0 | 210 | 0.1985 | 0.9429 | 0.9442 |
78
- | 0.0435 | 6.0 | 252 | 0.2009 | 0.9429 | 0.9442 |
79
- | 0.0414 | 7.0 | 294 | 0.1976 | 0.9429 | 0.9442 |
80
- | 0.0402 | 8.0 | 336 | 0.1978 | 0.9429 | 0.9442 |
81
- | 0.0391 | 9.0 | 378 | 0.1967 | 0.9429 | 0.9442 |
82
- | 0.0385 | 10.0 | 420 | 0.1971 | 0.9429 | 0.9442 |
83
-
84
-
85
- ### Framework versions
86
-
87
- - Transformers 4.45.2
88
- - Pytorch 2.4.1+cu121
89
- - Datasets 3.0.1
90
- - Tokenizers 0.20.0
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: google/vit-base-patch16-224-in21k
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - imagefolder
9
+ metrics:
10
+ - accuracy
11
+ - f1
12
+ model-index:
13
+ - name: got-model
14
+ results:
15
+ - task:
16
+ name: Image Classification
17
+ type: image-classification
18
+ dataset:
19
+ name: imagefolder
20
+ type: imagefolder
21
+ config: default
22
+ split: test
23
+ args: default
24
+ metrics:
25
+ - name: Accuracy
26
+ type: accuracy
27
+ value: 0.9428571428571428
28
+ - name: F1
29
+ type: f1
30
+ value: 0.9442260195944405
31
+ ---
32
+
33
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
34
+ should probably proofread and complete it, then remove this comment. -->
35
+
36
+ # got-model
37
+
38
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
39
+ It achieves the following results on the evaluation set:
40
+ - Loss: 0.1971
41
+ - Accuracy: 0.9429
42
+ - F1: 0.9442
43
+
44
+ ## Model description
45
+
46
+ More information needed
47
+
48
+ ## Intended uses & limitations
49
+
50
+ More information needed
51
+
52
+ ## Training and evaluation data
53
+
54
+ More information needed
55
+
56
+ ## Training procedure
57
+
58
+ ### Training hyperparameters
59
+
60
+ The following hyperparameters were used during training:
61
+ - learning_rate: 2e-05
62
+ - train_batch_size: 16
63
+ - eval_batch_size: 16
64
+ - seed: 42
65
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
66
+ - lr_scheduler_type: linear
67
+ - num_epochs: 10
68
+
69
+ ### Training results
70
+
71
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
72
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
73
+ | 0.073 | 1.0 | 42 | 0.2416 | 0.9238 | 0.9250 |
74
+ | 0.061 | 2.0 | 84 | 0.2160 | 0.9333 | 0.9345 |
75
+ | 0.0543 | 3.0 | 126 | 0.2114 | 0.9429 | 0.9432 |
76
+ | 0.0497 | 4.0 | 168 | 0.2028 | 0.9429 | 0.9442 |
77
+ | 0.046 | 5.0 | 210 | 0.1985 | 0.9429 | 0.9442 |
78
+ | 0.0435 | 6.0 | 252 | 0.2009 | 0.9429 | 0.9442 |
79
+ | 0.0414 | 7.0 | 294 | 0.1976 | 0.9429 | 0.9442 |
80
+ | 0.0402 | 8.0 | 336 | 0.1978 | 0.9429 | 0.9442 |
81
+ | 0.0391 | 9.0 | 378 | 0.1967 | 0.9429 | 0.9442 |
82
+ | 0.0385 | 10.0 | 420 | 0.1971 | 0.9429 | 0.9442 |
83
+
84
+
85
+ ### Framework versions
86
+
87
+ - Transformers 4.45.2
88
+ - Pytorch 2.4.1+cu121
89
+ - Datasets 3.0.1
90
+ - Tokenizers 0.20.0
all_results.json CHANGED
@@ -1,8 +1,14 @@
1
- {
2
- "epoch": 10.0,
3
- "total_flos": 5.130291560557363e+17,
4
- "train_loss": 0.04840113861220224,
5
- "train_runtime": 1424.2891,
6
- "train_samples_per_second": 4.648,
7
- "train_steps_per_second": 0.295
 
 
 
 
 
 
8
  }
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 0.09523809523809523,
4
+ "eval_f1": 0.016563146997929608,
5
+ "eval_loss": NaN,
6
+ "eval_runtime": 2.8277,
7
+ "eval_samples_per_second": 37.133,
8
+ "eval_steps_per_second": 4.951,
9
+ "total_flos": 5.130291560557363e+17,
10
+ "train_loss": 0.0,
11
+ "train_runtime": 548.693,
12
+ "train_samples_per_second": 12.065,
13
+ "train_steps_per_second": 1.513
14
  }
config.json CHANGED
@@ -1,46 +1,46 @@
1
- {
2
- "_name_or_path": "google/vit-base-patch16-224-in21k",
3
- "architectures": [
4
- "ViTForImageClassification"
5
- ],
6
- "attention_probs_dropout_prob": 0.0,
7
- "encoder_stride": 16,
8
- "hidden_act": "gelu",
9
- "hidden_dropout_prob": 0.0,
10
- "hidden_size": 768,
11
- "id2label": {
12
- "0": "LABEL_0",
13
- "1": "LABEL_1",
14
- "2": "LABEL_2",
15
- "3": "LABEL_3",
16
- "4": "LABEL_4",
17
- "5": "LABEL_5",
18
- "6": "LABEL_6",
19
- "7": "LABEL_7",
20
- "8": "LABEL_8"
21
- },
22
- "image_size": 224,
23
- "initializer_range": 0.02,
24
- "intermediate_size": 3072,
25
- "label2id": {
26
- "LABEL_0": 0,
27
- "LABEL_1": 1,
28
- "LABEL_2": 2,
29
- "LABEL_3": 3,
30
- "LABEL_4": 4,
31
- "LABEL_5": 5,
32
- "LABEL_6": 6,
33
- "LABEL_7": 7,
34
- "LABEL_8": 8
35
- },
36
- "layer_norm_eps": 1e-12,
37
- "model_type": "vit",
38
- "num_attention_heads": 12,
39
- "num_channels": 3,
40
- "num_hidden_layers": 12,
41
- "patch_size": 16,
42
- "problem_type": "single_label_classification",
43
- "qkv_bias": true,
44
- "torch_dtype": "float32",
45
- "transformers_version": "4.45.2"
46
- }
 
1
+ {
2
+ "_name_or_path": "google/vit-base-patch16-224-in21k",
3
+ "architectures": [
4
+ "ViTForImageClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "encoder_stride": 16,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.0,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "LABEL_0",
13
+ "1": "LABEL_1",
14
+ "2": "LABEL_2",
15
+ "3": "LABEL_3",
16
+ "4": "LABEL_4",
17
+ "5": "LABEL_5",
18
+ "6": "LABEL_6",
19
+ "7": "LABEL_7",
20
+ "8": "LABEL_8"
21
+ },
22
+ "image_size": 224,
23
+ "initializer_range": 0.02,
24
+ "intermediate_size": 3072,
25
+ "label2id": {
26
+ "LABEL_0": 0,
27
+ "LABEL_1": 1,
28
+ "LABEL_2": 2,
29
+ "LABEL_3": 3,
30
+ "LABEL_4": 4,
31
+ "LABEL_5": 5,
32
+ "LABEL_6": 6,
33
+ "LABEL_7": 7,
34
+ "LABEL_8": 8
35
+ },
36
+ "layer_norm_eps": 1e-12,
37
+ "model_type": "vit",
38
+ "num_attention_heads": 12,
39
+ "num_channels": 3,
40
+ "num_hidden_layers": 12,
41
+ "patch_size": 16,
42
+ "problem_type": "single_label_classification",
43
+ "qkv_bias": true,
44
+ "torch_dtype": "float32",
45
+ "transformers_version": "4.46.2"
46
+ }
eval_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 0.09523809523809523,
4
+ "eval_f1": 0.016563146997929608,
5
+ "eval_loss": NaN,
6
+ "eval_runtime": 2.8277,
7
+ "eval_samples_per_second": 37.133,
8
+ "eval_steps_per_second": 4.951
9
+ }
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:87e4f49d00358cdf718d9df6a65cdd1d1655c075ab6ffe21445ad635be350a8a
3
  size 343245508
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:faea4fd9bce54a0a8ac21d7a2f02bfb00b0583239a931c498b5f6a552ec027ec
3
  size 343245508
preprocessor_config.json CHANGED
@@ -1,22 +1,22 @@
1
- {
2
- "do_normalize": true,
3
- "do_rescale": true,
4
- "do_resize": true,
5
- "image_mean": [
6
- 0.5,
7
- 0.5,
8
- 0.5
9
- ],
10
- "image_processor_type": "ViTFeatureExtractor",
11
- "image_std": [
12
- 0.5,
13
- 0.5,
14
- 0.5
15
- ],
16
- "resample": 2,
17
- "rescale_factor": 0.00392156862745098,
18
- "size": {
19
- "height": 224,
20
- "width": 224
21
- }
22
- }
 
1
+ {
2
+ "do_normalize": true,
3
+ "do_rescale": true,
4
+ "do_resize": true,
5
+ "image_mean": [
6
+ 0.5,
7
+ 0.5,
8
+ 0.5
9
+ ],
10
+ "image_processor_type": "ViTFeatureExtractor",
11
+ "image_std": [
12
+ 0.5,
13
+ 0.5,
14
+ 0.5
15
+ ],
16
+ "resample": 2,
17
+ "rescale_factor": 0.00392156862745098,
18
+ "size": {
19
+ "height": 224,
20
+ "width": 224
21
+ }
22
+ }
train_results.json CHANGED
@@ -1,8 +1,8 @@
1
- {
2
- "epoch": 10.0,
3
- "total_flos": 5.130291560557363e+17,
4
- "train_loss": 0.04840113861220224,
5
- "train_runtime": 1424.2891,
6
- "train_samples_per_second": 4.648,
7
- "train_steps_per_second": 0.295
8
  }
 
1
+ {
2
+ "epoch": 10.0,
3
+ "total_flos": 5.130291560557363e+17,
4
+ "train_loss": 0.0,
5
+ "train_runtime": 548.693,
6
+ "train_samples_per_second": 12.065,
7
+ "train_steps_per_second": 1.513
8
  }
trainer_state.json ADDED
@@ -0,0 +1,282 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 10.0,
5
+ "eval_steps": 500,
6
+ "global_step": 830,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.4939759036144578,
13
+ "grad_norm": NaN,
14
+ "learning_rate": 1.9012048192771087e-05,
15
+ "loss": 0.0,
16
+ "step": 41
17
+ },
18
+ {
19
+ "epoch": 0.9879518072289156,
20
+ "grad_norm": NaN,
21
+ "learning_rate": 1.802409638554217e-05,
22
+ "loss": 0.0,
23
+ "step": 82
24
+ },
25
+ {
26
+ "epoch": 1.0,
27
+ "eval_accuracy": 0.09523809523809523,
28
+ "eval_f1": 0.016563146997929608,
29
+ "eval_loss": NaN,
30
+ "eval_runtime": 2.8332,
31
+ "eval_samples_per_second": 37.061,
32
+ "eval_steps_per_second": 4.941,
33
+ "step": 83
34
+ },
35
+ {
36
+ "epoch": 1.4819277108433735,
37
+ "grad_norm": NaN,
38
+ "learning_rate": 1.7036144578313254e-05,
39
+ "loss": 0.0,
40
+ "step": 123
41
+ },
42
+ {
43
+ "epoch": 1.9759036144578315,
44
+ "grad_norm": NaN,
45
+ "learning_rate": 1.604819277108434e-05,
46
+ "loss": 0.0,
47
+ "step": 164
48
+ },
49
+ {
50
+ "epoch": 2.0,
51
+ "eval_accuracy": 0.09523809523809523,
52
+ "eval_f1": 0.016563146997929608,
53
+ "eval_loss": NaN,
54
+ "eval_runtime": 2.8629,
55
+ "eval_samples_per_second": 36.676,
56
+ "eval_steps_per_second": 4.89,
57
+ "step": 166
58
+ },
59
+ {
60
+ "epoch": 2.4698795180722892,
61
+ "grad_norm": NaN,
62
+ "learning_rate": 1.5060240963855424e-05,
63
+ "loss": 0.0,
64
+ "step": 205
65
+ },
66
+ {
67
+ "epoch": 2.963855421686747,
68
+ "grad_norm": NaN,
69
+ "learning_rate": 1.4072289156626506e-05,
70
+ "loss": 0.0,
71
+ "step": 246
72
+ },
73
+ {
74
+ "epoch": 3.0,
75
+ "eval_accuracy": 0.09523809523809523,
76
+ "eval_f1": 0.016563146997929608,
77
+ "eval_loss": NaN,
78
+ "eval_runtime": 2.8905,
79
+ "eval_samples_per_second": 36.326,
80
+ "eval_steps_per_second": 4.843,
81
+ "step": 249
82
+ },
83
+ {
84
+ "epoch": 3.4578313253012047,
85
+ "grad_norm": NaN,
86
+ "learning_rate": 1.3084337349397591e-05,
87
+ "loss": 0.0,
88
+ "step": 287
89
+ },
90
+ {
91
+ "epoch": 3.9518072289156625,
92
+ "grad_norm": NaN,
93
+ "learning_rate": 1.2096385542168677e-05,
94
+ "loss": 0.0,
95
+ "step": 328
96
+ },
97
+ {
98
+ "epoch": 4.0,
99
+ "eval_accuracy": 0.09523809523809523,
100
+ "eval_f1": 0.016563146997929608,
101
+ "eval_loss": NaN,
102
+ "eval_runtime": 2.8626,
103
+ "eval_samples_per_second": 36.68,
104
+ "eval_steps_per_second": 4.891,
105
+ "step": 332
106
+ },
107
+ {
108
+ "epoch": 4.445783132530121,
109
+ "grad_norm": NaN,
110
+ "learning_rate": 1.110843373493976e-05,
111
+ "loss": 0.0,
112
+ "step": 369
113
+ },
114
+ {
115
+ "epoch": 4.9397590361445785,
116
+ "grad_norm": NaN,
117
+ "learning_rate": 1.0120481927710844e-05,
118
+ "loss": 0.0,
119
+ "step": 410
120
+ },
121
+ {
122
+ "epoch": 5.0,
123
+ "eval_accuracy": 0.09523809523809523,
124
+ "eval_f1": 0.016563146997929608,
125
+ "eval_loss": NaN,
126
+ "eval_runtime": 2.8494,
127
+ "eval_samples_per_second": 36.849,
128
+ "eval_steps_per_second": 4.913,
129
+ "step": 415
130
+ },
131
+ {
132
+ "epoch": 5.433734939759036,
133
+ "grad_norm": NaN,
134
+ "learning_rate": 9.132530120481929e-06,
135
+ "loss": 0.0,
136
+ "step": 451
137
+ },
138
+ {
139
+ "epoch": 5.927710843373494,
140
+ "grad_norm": NaN,
141
+ "learning_rate": 8.144578313253012e-06,
142
+ "loss": 0.0,
143
+ "step": 492
144
+ },
145
+ {
146
+ "epoch": 6.0,
147
+ "eval_accuracy": 0.09523809523809523,
148
+ "eval_f1": 0.016563146997929608,
149
+ "eval_loss": NaN,
150
+ "eval_runtime": 2.8675,
151
+ "eval_samples_per_second": 36.617,
152
+ "eval_steps_per_second": 4.882,
153
+ "step": 498
154
+ },
155
+ {
156
+ "epoch": 6.421686746987952,
157
+ "grad_norm": NaN,
158
+ "learning_rate": 7.156626506024097e-06,
159
+ "loss": 0.0,
160
+ "step": 533
161
+ },
162
+ {
163
+ "epoch": 6.9156626506024095,
164
+ "grad_norm": NaN,
165
+ "learning_rate": 6.168674698795182e-06,
166
+ "loss": 0.0,
167
+ "step": 574
168
+ },
169
+ {
170
+ "epoch": 7.0,
171
+ "eval_accuracy": 0.09523809523809523,
172
+ "eval_f1": 0.016563146997929608,
173
+ "eval_loss": NaN,
174
+ "eval_runtime": 2.8441,
175
+ "eval_samples_per_second": 36.919,
176
+ "eval_steps_per_second": 4.922,
177
+ "step": 581
178
+ },
179
+ {
180
+ "epoch": 7.409638554216867,
181
+ "grad_norm": NaN,
182
+ "learning_rate": 5.180722891566266e-06,
183
+ "loss": 0.0,
184
+ "step": 615
185
+ },
186
+ {
187
+ "epoch": 7.903614457831325,
188
+ "grad_norm": NaN,
189
+ "learning_rate": 4.19277108433735e-06,
190
+ "loss": 0.0,
191
+ "step": 656
192
+ },
193
+ {
194
+ "epoch": 8.0,
195
+ "eval_accuracy": 0.09523809523809523,
196
+ "eval_f1": 0.016563146997929608,
197
+ "eval_loss": NaN,
198
+ "eval_runtime": 2.8258,
199
+ "eval_samples_per_second": 37.157,
200
+ "eval_steps_per_second": 4.954,
201
+ "step": 664
202
+ },
203
+ {
204
+ "epoch": 8.397590361445783,
205
+ "grad_norm": NaN,
206
+ "learning_rate": 3.204819277108434e-06,
207
+ "loss": 0.0,
208
+ "step": 697
209
+ },
210
+ {
211
+ "epoch": 8.891566265060241,
212
+ "grad_norm": NaN,
213
+ "learning_rate": 2.2168674698795183e-06,
214
+ "loss": 0.0,
215
+ "step": 738
216
+ },
217
+ {
218
+ "epoch": 9.0,
219
+ "eval_accuracy": 0.09523809523809523,
220
+ "eval_f1": 0.016563146997929608,
221
+ "eval_loss": NaN,
222
+ "eval_runtime": 2.8829,
223
+ "eval_samples_per_second": 36.422,
224
+ "eval_steps_per_second": 4.856,
225
+ "step": 747
226
+ },
227
+ {
228
+ "epoch": 9.385542168674698,
229
+ "grad_norm": NaN,
230
+ "learning_rate": 1.2289156626506025e-06,
231
+ "loss": 0.0,
232
+ "step": 779
233
+ },
234
+ {
235
+ "epoch": 9.879518072289157,
236
+ "grad_norm": NaN,
237
+ "learning_rate": 2.409638554216868e-07,
238
+ "loss": 0.0,
239
+ "step": 820
240
+ },
241
+ {
242
+ "epoch": 10.0,
243
+ "eval_accuracy": 0.09523809523809523,
244
+ "eval_f1": 0.016563146997929608,
245
+ "eval_loss": NaN,
246
+ "eval_runtime": 2.8484,
247
+ "eval_samples_per_second": 36.863,
248
+ "eval_steps_per_second": 4.915,
249
+ "step": 830
250
+ },
251
+ {
252
+ "epoch": 10.0,
253
+ "step": 830,
254
+ "total_flos": 5.130291560557363e+17,
255
+ "train_loss": 0.0,
256
+ "train_runtime": 548.693,
257
+ "train_samples_per_second": 12.065,
258
+ "train_steps_per_second": 1.513
259
+ }
260
+ ],
261
+ "logging_steps": 41,
262
+ "max_steps": 830,
263
+ "num_input_tokens_seen": 0,
264
+ "num_train_epochs": 10,
265
+ "save_steps": 500,
266
+ "stateful_callbacks": {
267
+ "TrainerControl": {
268
+ "args": {
269
+ "should_epoch_stop": false,
270
+ "should_evaluate": false,
271
+ "should_log": false,
272
+ "should_save": true,
273
+ "should_training_stop": true
274
+ },
275
+ "attributes": {}
276
+ }
277
+ },
278
+ "total_flos": 5.130291560557363e+17,
279
+ "train_batch_size": 8,
280
+ "trial_name": null,
281
+ "trial_params": null
282
+ }
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b217f60eca579a79f17be2ca050edd9d4ae9009327acb05ae2ede5375fd5835d
3
- size 5176
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0700128b977dcfbe9aadb63bb0ff124cbe09812beff12427b460eda1058c382a
3
+ size 5240