ndeclarke's picture
End of training
6ac6161 verified
|
raw
history blame
2.59 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: wav2vec2-xls-r-300m-malayalam-colab-CV17.0-v2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: ml
          split: test
          args: ml
        metrics:
          - name: Wer
            type: wer
            value: 0.7946486137975499

wav2vec2-xls-r-300m-malayalam-colab-CV17.0-v2

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9415
  • Wer: 0.7946
  • Cer: 0.1990

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.15
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
8.3824 3.1496 200 3.5244 1.0 1.0
2.8615 6.2992 400 1.4480 0.9716 0.3680
0.8112 9.4488 600 0.9231 0.9188 0.2573
0.4211 12.5984 800 0.9136 0.8843 0.2477
0.2862 15.7480 1000 0.9257 0.8533 0.2370
0.21 18.8976 1200 0.9450 0.8185 0.2188
0.1772 22.0472 1400 0.9285 0.8343 0.2151
0.1432 25.1969 1600 0.9596 0.8262 0.2110
0.117 28.3465 1800 0.9419 0.7985 0.2026
0.1047 31.4961 2000 0.9415 0.7946 0.1990

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1