SentenceTransformer based on vinai/phobert-base-v2
This is a sentence-transformers model finetuned from vinai/phobert-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: vinai/phobert-base-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Tuy_nhiên , nếu bệnh không tự lành và vẫn tiếp_tục chảy_máu , cần phải sử_dụng các liệu_pháp cầm máu để bù lại lượng máu đã mất .',
'Một_số yếu_tố làm tăng nguy_cơ mắc bệnh như : Yếu_tố nội_tiết : bệnh thường gặp ở phụ_nữ chậm có kinh và sớm mãn_kinh .',
'Nguyễn_Thị_Thanh_Tuyền ( 1995 ) .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 362,208 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 3 tokens
- mean: 22.64 tokens
- max: 104 tokens
- min: 3 tokens
- mean: 23.25 tokens
- max: 222 tokens
- min: 0.1
- mean: 0.82
- max: 1.0
- Samples:
sentence_0 sentence_1 label Hiệu_lực của vaccine AstraZeneca ra sao ?
Hiệu_lực của vaccine AstraZeneca ra sao ?
1.0
Gần đây , tôi có quen một bạn gái , mỗi lần ngồi gần nhau có cử_chỉ thân_mật thì tôi gần như không kìm chế được có_thể nói là giống như hiện_tượng xuất_tinh sớm .
Chụp CT scanner sọ não : là hình_ảnh tốt nhất để đánh_giá tổn_thương não vì có_thể hiển_thị mô não hoặc xuất_huyết não hoặc nhũn_não .
0.6540138125419617
Sốt siêu_vi sau quan_hệ tình_dục không an_toàn có phải đã nhiễm HIV không ?
Sốt siêu_vi sau quan_hệ tình_dục không an_toàn có phải đã nhiễm HIV không ?
1.0
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 4multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falsefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0221 | 500 | 0.0168 |
0.0442 | 1000 | 0.0139 |
0.0663 | 1500 | 0.0142 |
0.0883 | 2000 | 0.0139 |
0.1104 | 2500 | 0.0137 |
0.1325 | 3000 | 0.0139 |
0.1546 | 3500 | 0.0137 |
0.1767 | 4000 | 0.0139 |
0.1988 | 4500 | 0.0136 |
0.2209 | 5000 | 0.0135 |
0.2430 | 5500 | 0.0137 |
0.2650 | 6000 | 0.0138 |
0.2871 | 6500 | 0.0136 |
0.3092 | 7000 | 0.0137 |
0.3313 | 7500 | 0.0138 |
0.3534 | 8000 | 0.0135 |
0.3755 | 8500 | 0.0138 |
0.3976 | 9000 | 0.0138 |
0.4196 | 9500 | 0.0141 |
0.4417 | 10000 | 0.0139 |
0.4638 | 10500 | 0.0139 |
0.4859 | 11000 | 0.0138 |
0.5080 | 11500 | 0.0141 |
0.5301 | 12000 | 0.0138 |
0.5522 | 12500 | 0.0138 |
0.5743 | 13000 | 0.0138 |
0.5963 | 13500 | 0.0138 |
0.6184 | 14000 | 0.0136 |
0.6405 | 14500 | 0.0139 |
0.6626 | 15000 | 0.0151 |
0.6847 | 15500 | 0.019 |
0.7068 | 16000 | 0.0184 |
0.7289 | 16500 | 0.018 |
0.7509 | 17000 | 0.0163 |
0.7730 | 17500 | 0.0164 |
0.7951 | 18000 | 0.0158 |
0.8172 | 18500 | 0.0155 |
0.8393 | 19000 | 0.0151 |
0.8614 | 19500 | 0.0151 |
0.8835 | 20000 | 0.0152 |
0.9056 | 20500 | 0.0152 |
0.9276 | 21000 | 0.0151 |
0.9497 | 21500 | 0.0148 |
0.9718 | 22000 | 0.015 |
0.9939 | 22500 | 0.0147 |
1.0160 | 23000 | 0.0149 |
1.0381 | 23500 | 0.0151 |
1.0602 | 24000 | 0.015 |
1.0823 | 24500 | 0.0148 |
1.1043 | 25000 | 0.0147 |
1.1264 | 25500 | 0.0149 |
1.1485 | 26000 | 0.0147 |
1.1706 | 26500 | 0.015 |
1.1927 | 27000 | 0.0146 |
1.2148 | 27500 | 0.0145 |
1.2369 | 28000 | 0.0147 |
1.2589 | 28500 | 0.0149 |
1.2810 | 29000 | 0.0147 |
1.3031 | 29500 | 0.0144 |
1.3252 | 30000 | 0.0147 |
1.3473 | 30500 | 0.0147 |
1.3694 | 31000 | 0.0145 |
1.3915 | 31500 | 0.0149 |
1.4136 | 32000 | 0.0147 |
1.4356 | 32500 | 0.0148 |
1.4577 | 33000 | 0.0148 |
1.4798 | 33500 | 0.0145 |
1.5019 | 34000 | 0.0149 |
1.5240 | 34500 | 0.0147 |
1.5461 | 35000 | 0.0146 |
1.5682 | 35500 | 0.0144 |
1.5902 | 36000 | 0.0146 |
1.6123 | 36500 | 0.0143 |
1.6344 | 37000 | 0.0145 |
1.6565 | 37500 | 0.0145 |
1.6786 | 38000 | 0.0146 |
1.7007 | 38500 | 0.0143 |
1.7228 | 39000 | 0.0149 |
1.7449 | 39500 | 0.0143 |
1.7669 | 40000 | 0.0146 |
1.7890 | 40500 | 0.0146 |
1.8111 | 41000 | 0.0146 |
1.8332 | 41500 | 0.0142 |
1.8553 | 42000 | 0.0144 |
1.8774 | 42500 | 0.0146 |
1.8995 | 43000 | 0.0147 |
1.9215 | 43500 | 0.0144 |
1.9436 | 44000 | 0.0145 |
1.9657 | 44500 | 0.0143 |
1.9878 | 45000 | 0.0146 |
2.0099 | 45500 | 0.0143 |
2.0320 | 46000 | 0.0147 |
2.0541 | 46500 | 0.0146 |
2.0762 | 47000 | 0.0144 |
2.0982 | 47500 | 0.0144 |
2.1203 | 48000 | 0.0144 |
2.1424 | 48500 | 0.0145 |
2.1645 | 49000 | 0.0144 |
2.1866 | 49500 | 0.0144 |
2.2087 | 50000 | 0.0141 |
2.2308 | 50500 | 0.0142 |
2.2528 | 51000 | 0.0145 |
2.2749 | 51500 | 0.0143 |
2.2970 | 52000 | 0.0141 |
2.3191 | 52500 | 0.0144 |
2.3412 | 53000 | 0.0143 |
2.3633 | 53500 | 0.0144 |
2.3854 | 54000 | 0.0144 |
2.4075 | 54500 | 0.0144 |
2.4295 | 55000 | 0.0145 |
2.4516 | 55500 | 0.0145 |
2.4737 | 56000 | 0.0144 |
2.4958 | 56500 | 0.0147 |
2.5179 | 57000 | 0.0145 |
2.5400 | 57500 | 0.0144 |
2.5621 | 58000 | 0.0143 |
2.5842 | 58500 | 0.0144 |
2.6062 | 59000 | 0.0143 |
2.6283 | 59500 | 0.0142 |
2.6504 | 60000 | 0.0143 |
2.6725 | 60500 | 0.0143 |
2.6946 | 61000 | 0.0143 |
2.7167 | 61500 | 0.0144 |
2.7388 | 62000 | 0.0143 |
2.7608 | 62500 | 0.0143 |
2.7829 | 63000 | 0.0146 |
2.8050 | 63500 | 0.0144 |
2.8271 | 64000 | 0.0141 |
2.8492 | 64500 | 0.0142 |
2.8713 | 65000 | 0.0143 |
2.8934 | 65500 | 0.0146 |
2.9155 | 66000 | 0.0143 |
2.9375 | 66500 | 0.0143 |
2.9596 | 67000 | 0.0141 |
2.9817 | 67500 | 0.0144 |
3.0038 | 68000 | 0.0143 |
3.0259 | 68500 | 0.0145 |
3.0480 | 69000 | 0.0142 |
3.0701 | 69500 | 0.0145 |
3.0921 | 70000 | 0.0142 |
3.1142 | 70500 | 0.0143 |
3.1363 | 71000 | 0.0142 |
3.1584 | 71500 | 0.0143 |
3.1805 | 72000 | 0.0143 |
3.2026 | 72500 | 0.014 |
3.2247 | 73000 | 0.0141 |
3.2468 | 73500 | 0.0142 |
3.2688 | 74000 | 0.0143 |
3.2909 | 74500 | 0.0141 |
3.3130 | 75000 | 0.0141 |
3.3351 | 75500 | 0.0143 |
3.3572 | 76000 | 0.0141 |
3.3793 | 76500 | 0.0143 |
3.4014 | 77000 | 0.0143 |
3.4234 | 77500 | 0.0146 |
3.4455 | 78000 | 0.0144 |
3.4676 | 78500 | 0.0143 |
3.4897 | 79000 | 0.0144 |
3.5118 | 79500 | 0.0145 |
3.5339 | 80000 | 0.0142 |
3.5560 | 80500 | 0.0144 |
3.5781 | 81000 | 0.0143 |
3.6001 | 81500 | 0.0142 |
3.6222 | 82000 | 0.0142 |
3.6443 | 82500 | 0.0142 |
3.6664 | 83000 | 0.014 |
3.6885 | 83500 | 0.0144 |
3.7106 | 84000 | 0.0141 |
3.7327 | 84500 | 0.0143 |
3.7547 | 85000 | 0.014 |
3.7768 | 85500 | 0.0146 |
3.7989 | 86000 | 0.0143 |
3.8210 | 86500 | 0.0142 |
3.8431 | 87000 | 0.0139 |
3.8652 | 87500 | 0.0143 |
3.8873 | 88000 | 0.0144 |
3.9094 | 88500 | 0.0143 |
3.9314 | 89000 | 0.0142 |
3.9535 | 89500 | 0.0142 |
3.9756 | 90000 | 0.0142 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.1.0.dev0
- Transformers: 4.39.3
- PyTorch: 2.1.2
- Accelerate: 0.29.3
- Datasets: 2.18.0
- Tokenizers: 0.15.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
- Downloads last month
- 84
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for ndpphuong/viMedPhoBert_finetune_simcse_v2.1
Base model
vinai/phobert-base-v2