ndsanjana's picture
Bert fine tuned model for twitter sentiment analysis
affcb13 verified
metadata
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - f1
  - accuracy
model-index:
  - name: bert-finetuned-twitter_sentiment_analysis
    results: []

bert-finetuned-twitter_sentiment_analysis

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4175
  • F1: 0.7741
  • Roc Auc: 0.8301
  • Accuracy: 0.7639

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss F1 Roc Auc Accuracy
No log 1.0 197 0.3546 0.7613 0.8172 0.7210
No log 2.0 394 0.3312 0.7622 0.8151 0.6924
0.3121 3.0 591 0.3511 0.7699 0.8244 0.7368
0.3121 4.0 788 0.4018 0.7833 0.8355 0.7654
0.3121 5.0 985 0.4175 0.7741 0.8301 0.7639

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3