llm3br256
This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the goavanto-oneshot-train dataset. It achieves the following results on the evaluation set:
- Loss: 0.0060
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.0165 | 0.2548 | 50 | 0.0163 |
0.0137 | 0.5096 | 100 | 0.0120 |
0.01 | 0.7643 | 150 | 0.0105 |
0.0094 | 1.0191 | 200 | 0.0094 |
0.0086 | 1.2739 | 250 | 0.0088 |
0.0082 | 1.5287 | 300 | 0.0081 |
0.0072 | 1.7834 | 350 | 0.0076 |
0.0075 | 2.0382 | 400 | 0.0075 |
0.0056 | 2.2930 | 450 | 0.0071 |
0.0054 | 2.5478 | 500 | 0.0069 |
0.0048 | 2.8025 | 550 | 0.0067 |
0.0037 | 3.0573 | 600 | 0.0066 |
0.0029 | 3.3121 | 650 | 0.0062 |
0.0031 | 3.5669 | 700 | 0.0064 |
0.0029 | 3.8217 | 750 | 0.0060 |
0.0025 | 4.0764 | 800 | 0.0062 |
0.0021 | 4.3312 | 850 | 0.0063 |
0.0024 | 4.5860 | 900 | 0.0061 |
0.0025 | 4.8408 | 950 | 0.0061 |
Framework versions
- PEFT 0.12.0
- Transformers 4.46.1
- Pytorch 2.4.0+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 3
Model tree for neel-nanonets/goavanto_1
Base model
meta-llama/Llama-3.2-3B-Instruct
Finetuned
unsloth/Llama-3.2-3B-Instruct