MagicAnimate: Temporally Consistent Human Image Animation using Diffusion Model
Zhongcong Xu
Β·
Jianfeng Zhang
Β·
Jun Hao Liew
Β·
Hanshu Yan
Β·
Jia-Wei Liu
Β·
Chenxu Zhang
Β·
Jiashi Feng
Β·
Mike Zheng Shou
National University of Singapore | ByteDance
π’ News
- [2023.12.4] Release inference code and gradio demo. We are working to improve MagicAnimate, stay tuned!
- [2023.11.23] Release MagicAnimate paper and project page.
πββοΈ Getting Started
Download the pretrained base models for StableDiffusion V1.5 and MSE-finetuned VAE.
Download our MagicAnimate checkpoints.
Please follow the huggingface download instructions to download the above models and checkpoints, git lfs
is recommended.
Place the based models and checkpoints as follows:
magic-animate
|----pretrained_models
|----MagicAnimate
|----appearance_encoder
|----diffusion_pytorch_model.safetensors
|----config.json
|----densepose_controlnet
|----diffusion_pytorch_model.safetensors
|----config.json
|----temporal_attention
|----temporal_attention.ckpt
|----sd-vae-ft-mse
|----config.json
|----diffusion_pytorch_model.safetensors
|----stable-diffusion-v1-5
|----scheduler
|----scheduler_config.json
|----text_encoder
|----config.json
|----pytorch_model.bin
|----tokenizer (all)
|----unet
|----diffusion_pytorch_model.bin
|----config.json
|----v1-5-pruned-emaonly.safetensors
|----...
βοΈ Installation
prerequisites: python>=3.8
, CUDA>=11.3
, and ffmpeg
.
Install with conda
:
conda env create -f environment.yaml
conda activate manimate
or pip
:
pip3 install -r requirements.txt
π Inference
Run inference on single GPU:
bash scripts/animate.sh
Run inference with multiple GPUs:
bash scripts/animate_dist.sh
π¨ Gradio Demo
Online Gradio Demo:
Try our online gradio demo quickly.
Local Gradio Demo:
Launch local gradio demo on single GPU:
python3 -m demo.gradio_animate
Launch local gradio demo if you have multiple GPUs:
python3 -m demo.gradio_animate_dist
Then open gradio demo in local browser.
π Acknowledgements
We would like to thank AK(@_akhaliq) and huggingface team for the help of setting up oneline gradio demo.
π Citation
If you find this codebase useful for your research, please use the following entry.
@inproceedings{xu2023magicanimate,
author = {Xu, Zhongcong and Zhang, Jianfeng and Liew, Jun Hao and Yan, Hanshu and Liu, Jia-Wei and Zhang, Chenxu and Feng, Jiashi and Shou, Mike Zheng},
title = {MagicAnimate: Temporally Consistent Human Image Animation using Diffusion Model},
booktitle = {arXiv},
year = {2023}
}
- Downloads last month
- 0