nemik's picture
frostsolutions/frost-vision-v2-google_vit-base-patch16-224-v2024-11-09
8bc35f7 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - webdataset
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: frost-vision-v2-google_vit-base-patch16-224-v2024-11-09
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: webdataset
          type: webdataset
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9411971830985916
          - name: F1
            type: f1
            value: 0.8485947416137806
          - name: Precision
            type: precision
            value: 0.8540145985401459
          - name: Recall
            type: recall
            value: 0.8432432432432433

frost-vision-v2-google_vit-base-patch16-224-v2024-11-09

This model is a fine-tuned version of google/vit-base-patch16-224 on the webdataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1716
  • Accuracy: 0.9412
  • F1: 0.8486
  • Precision: 0.8540
  • Recall: 0.8432

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.2398 1.4085 100 0.2096 0.9215 0.7833 0.8502 0.7261
0.1746 2.8169 200 0.1676 0.9370 0.8362 0.8494 0.8234
0.1316 4.2254 300 0.1750 0.9282 0.8125 0.8293 0.7964
0.1305 5.6338 400 0.1671 0.9342 0.8270 0.8498 0.8054
0.1119 7.0423 500 0.1747 0.9317 0.8240 0.8300 0.8180
0.0913 8.4507 600 0.1515 0.9415 0.8505 0.8505 0.8505
0.0964 9.8592 700 0.1680 0.9377 0.8418 0.8351 0.8486
0.0659 11.2676 800 0.1891 0.9275 0.8144 0.8144 0.8144
0.0706 12.6761 900 0.1788 0.9320 0.8234 0.8364 0.8108
0.069 14.0845 1000 0.1716 0.9412 0.8486 0.8540 0.8432
0.0543 15.4930 1100 0.1847 0.9363 0.8341 0.8489 0.8198
0.0515 16.9014 1200 0.1741 0.9408 0.8470 0.8564 0.8378
0.0489 18.3099 1300 0.1793 0.9461 0.8620 0.8628 0.8613
0.0339 19.7183 1400 0.1806 0.9444 0.8569 0.8616 0.8523
0.0409 21.1268 1500 0.1784 0.9440 0.8569 0.8561 0.8577
0.0275 22.5352 1600 0.1839 0.9437 0.8548 0.8611 0.8486
0.0231 23.9437 1700 0.1865 0.9415 0.8480 0.8622 0.8342
0.0204 25.3521 1800 0.1884 0.9405 0.8482 0.8459 0.8505
0.0245 26.7606 1900 0.1935 0.9377 0.8410 0.8387 0.8432
0.0202 28.1690 2000 0.1888 0.9394 0.8456 0.8426 0.8486
0.0187 29.5775 2100 0.1914 0.9415 0.8502 0.8517 0.8486

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1