nemik's picture
frostsolutions/frost-vision-v2-google_vit-base-patch16-384-v2024-11-10
814cf95 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-384
tags:
  - generated_from_trainer
datasets:
  - webdataset
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: frost-vision-v2-google_vit-base-patch16-384-v2024-11-10
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: webdataset
          type: webdataset
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9274647887323944
          - name: F1
            type: f1
            value: 0.8186619718309859
          - name: Precision
            type: precision
            value: 0.8172231985940246
          - name: Recall
            type: recall
            value: 0.8201058201058201

frost-vision-v2-google_vit-base-patch16-384-v2024-11-10

This model is a fine-tuned version of google/vit-base-patch16-384 on the webdataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1847
  • Accuracy: 0.9275
  • F1: 0.8187
  • Precision: 0.8172
  • Recall: 0.8201

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.2243 1.4085 100 0.2088 0.9243 0.7981 0.8534 0.7496
0.2438 2.8169 200 0.1819 0.9299 0.8103 0.8817 0.7496
0.1338 4.2254 300 0.1608 0.9377 0.8449 0.8397 0.8501
0.1224 5.6338 400 0.1735 0.9271 0.8179 0.8158 0.8201
0.1065 7.0423 500 0.1847 0.9275 0.8187 0.8172 0.8201
0.1008 8.4507 600 0.1710 0.9405 0.8506 0.8528 0.8483
0.1005 9.8592 700 0.1823 0.9384 0.8405 0.8698 0.8131
0.0756 11.2676 800 0.1771 0.9415 0.8520 0.8613 0.8430
0.0653 12.6761 900 0.1971 0.9324 0.8310 0.8295 0.8325
0.0367 14.0845 1000 0.2123 0.9296 0.8221 0.8294 0.8148
0.0459 15.4930 1100 0.2006 0.9335 0.832 0.8387 0.8254
0.0559 16.9014 1200 0.2097 0.9313 0.8232 0.8470 0.8007
0.0382 18.3099 1300 0.2055 0.9352 0.8372 0.8401 0.8342
0.0361 19.7183 1400 0.2070 0.9335 0.8305 0.8449 0.8166
0.0358 21.1268 1500 0.1959 0.9398 0.8458 0.8653 0.8272
0.0382 22.5352 1600 0.2097 0.9320 0.8269 0.8412 0.8131
0.0285 23.9437 1700 0.2016 0.9415 0.8515 0.8639 0.8395
0.0141 25.3521 1800 0.2161 0.9366 0.8384 0.8537 0.8236
0.0179 26.7606 1900 0.2073 0.9377 0.8427 0.8495 0.8360
0.0263 28.1690 2000 0.2097 0.9391 0.8457 0.8556 0.8360
0.0191 29.5775 2100 0.2101 0.9377 0.8415 0.8545 0.8289

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.1.0
  • Tokenizers 0.19.1