|
--- |
|
library_name: transformers |
|
license: other |
|
base_model: apple/mobilevit-xx-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- webdataset |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: mobilevit-xx-small-v2024-10-22 |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: webdataset |
|
type: webdataset |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9337777777777778 |
|
- name: F1 |
|
type: f1 |
|
value: 0.826945412311266 |
|
- name: Precision |
|
type: precision |
|
value: 0.8259860788863109 |
|
- name: Recall |
|
type: recall |
|
value: 0.827906976744186 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mobilevit-xx-small-v2024-10-22 |
|
|
|
This model is a fine-tuned version of [apple/mobilevit-xx-small](https://huggingface.co/apple/mobilevit-xx-small) on the webdataset dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1725 |
|
- Accuracy: 0.9338 |
|
- F1: 0.8269 |
|
- Precision: 0.8260 |
|
- Recall: 0.8279 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 30 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.6549 | 1.7544 | 100 | 0.6289 | 0.82 | 0.6260 | 0.5191 | 0.7884 | |
|
| 0.4616 | 3.5088 | 200 | 0.4192 | 0.8867 | 0.7296 | 0.6706 | 0.8 | |
|
| 0.3101 | 5.2632 | 300 | 0.3071 | 0.9036 | 0.7318 | 0.7810 | 0.6884 | |
|
| 0.2932 | 7.0175 | 400 | 0.2486 | 0.908 | 0.7460 | 0.7896 | 0.7070 | |
|
| 0.2652 | 8.7719 | 500 | 0.2279 | 0.9138 | 0.7674 | 0.7921 | 0.7442 | |
|
| 0.2253 | 10.5263 | 600 | 0.2100 | 0.9218 | 0.7859 | 0.8240 | 0.7512 | |
|
| 0.2257 | 12.2807 | 700 | 0.1951 | 0.9249 | 0.8019 | 0.8085 | 0.7953 | |
|
| 0.2468 | 14.0351 | 800 | 0.1906 | 0.9307 | 0.8199 | 0.8142 | 0.8256 | |
|
| 0.1796 | 15.7895 | 900 | 0.1949 | 0.9276 | 0.8120 | 0.8055 | 0.8186 | |
|
| 0.1888 | 17.5439 | 1000 | 0.1807 | 0.9307 | 0.8178 | 0.8216 | 0.8140 | |
|
| 0.202 | 19.2982 | 1100 | 0.1772 | 0.9342 | 0.8287 | 0.8249 | 0.8326 | |
|
| 0.1824 | 21.0526 | 1200 | 0.1826 | 0.9276 | 0.8080 | 0.8186 | 0.7977 | |
|
| 0.1808 | 22.8070 | 1300 | 0.1682 | 0.9347 | 0.8297 | 0.8268 | 0.8326 | |
|
| 0.1792 | 24.5614 | 1400 | 0.1688 | 0.9364 | 0.8324 | 0.8392 | 0.8256 | |
|
| 0.1852 | 26.3158 | 1500 | 0.1725 | 0.9338 | 0.8269 | 0.8260 | 0.8279 | |
|
| 0.177 | 28.0702 | 1600 | 0.1690 | 0.9351 | 0.8282 | 0.8381 | 0.8186 | |
|
| 0.1857 | 29.8246 | 1700 | 0.1708 | 0.9298 | 0.8176 | 0.8119 | 0.8233 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.2 |
|
- Tokenizers 0.19.1 |
|
|