nemik's picture
Upload processor
a3d2d6b verified
metadata
base_model: apple/mobilevitv2-1.0-imagenet1k-256
datasets:
  - webdataset
library_name: transformers
license: other
metrics:
  - accuracy
  - f1
  - precision
  - recall
tags:
  - generated_from_trainer
model-index:
  - name: mobilevitv2-1.0-imagenet1k-256-finetuned_v2024-10-21-frost
    results:
      - task:
          type: image-classification
          name: Image Classification
        dataset:
          name: webdataset
          type: webdataset
          config: default
          split: train
          args: default
        metrics:
          - type: accuracy
            value: 0.9444444444444444
            name: Accuracy
          - type: f1
            value: 0.8544819557625145
            name: F1
          - type: precision
            value: 0.8615023474178404
            name: Precision
          - type: recall
            value: 0.8475750577367206
            name: Recall

mobilevitv2-1.0-imagenet1k-256-finetuned_v2024-10-21-frost

This model is a fine-tuned version of apple/mobilevitv2-1.0-imagenet1k-256 on the webdataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1539
  • Accuracy: 0.9444
  • F1: 0.8545
  • Precision: 0.8615
  • Recall: 0.8476

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6635 1.7544 100 0.6513 0.7604 0.5705 0.4355 0.8268
0.4461 3.5088 200 0.3972 0.8769 0.7292 0.6322 0.8614
0.2599 5.2632 300 0.2404 0.9227 0.8049 0.7821 0.8291
0.2074 7.0175 400 0.1942 0.9347 0.8256 0.8488 0.8037
0.167 8.7719 500 0.1772 0.9364 0.8354 0.8326 0.8383
0.1661 10.5263 600 0.1653 0.9342 0.8259 0.8417 0.8106
0.1603 12.2807 700 0.1649 0.9409 0.8473 0.8425 0.8522
0.1523 14.0351 800 0.1568 0.9467 0.8592 0.8735 0.8453
0.1506 15.7895 900 0.1548 0.9431 0.8494 0.8657 0.8337
0.1485 17.5439 1000 0.1539 0.9444 0.8545 0.8615 0.8476
0.1263 19.2982 1100 0.1521 0.944 0.8535 0.8595 0.8476
0.1444 21.0526 1200 0.1552 0.9418 0.8471 0.8561 0.8383
0.1133 22.8070 1300 0.1531 0.9449 0.8561 0.8601 0.8522
0.1019 24.5614 1400 0.1577 0.9431 0.8491 0.8675 0.8314
0.1141 26.3158 1500 0.1560 0.9413 0.8472 0.8492 0.8453
0.1087 28.0702 1600 0.1573 0.9422 0.8492 0.8531 0.8453
0.1015 29.8246 1700 0.1545 0.9422 0.8488 0.8548 0.8430

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1