layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7008
  • Answer: {'precision': 0.7050592034445641, 'recall': 0.8096415327564895, 'f1': 0.7537399309551209, 'number': 809}
  • Header: {'precision': 0.2803030303030303, 'recall': 0.31092436974789917, 'f1': 0.29482071713147406, 'number': 119}
  • Question: {'precision': 0.7809187279151943, 'recall': 0.8300469483568075, 'f1': 0.8047337278106509, 'number': 1065}
  • Overall Precision: 0.7187
  • Overall Recall: 0.7908
  • Overall F1: 0.7530
  • Overall Accuracy: 0.8087

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.787 1.0 10 1.5982 {'precision': 0.02607561929595828, 'recall': 0.024721878862793572, 'f1': 0.025380710659898473, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.2468354430379747, 'recall': 0.21971830985915494, 'f1': 0.23248882265275708, 'number': 1065} 0.1481 0.1274 0.1370 0.3555
1.4393 2.0 20 1.2504 {'precision': 0.10978520286396182, 'recall': 0.11372064276885044, 'f1': 0.1117182756527019, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.4381169324221716, 'recall': 0.5417840375586854, 'f1': 0.4844668345927792, 'number': 1065} 0.3104 0.3357 0.3226 0.5539
1.0904 3.0 30 0.9333 {'precision': 0.5273109243697479, 'recall': 0.6205191594561187, 'f1': 0.5701306076093129, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.5661929693343306, 'recall': 0.7107981220657277, 'f1': 0.630308076602831, 'number': 1065} 0.5436 0.6317 0.5844 0.7201
0.8353 4.0 40 0.7609 {'precision': 0.6157786885245902, 'recall': 0.7428924598269468, 'f1': 0.673389355742297, 'number': 809} {'precision': 0.10344827586206896, 'recall': 0.05042016806722689, 'f1': 0.06779661016949153, 'number': 119} {'precision': 0.651414309484193, 'recall': 0.7352112676056338, 'f1': 0.6907807675341862, 'number': 1065} 0.6216 0.6974 0.6574 0.7679
0.6619 5.0 50 0.7136 {'precision': 0.6655879180151025, 'recall': 0.7626699629171817, 'f1': 0.7108294930875575, 'number': 809} {'precision': 0.275, 'recall': 0.18487394957983194, 'f1': 0.22110552763819097, 'number': 119} {'precision': 0.685214626391097, 'recall': 0.8093896713615023, 'f1': 0.7421437795953508, 'number': 1065} 0.6627 0.7531 0.7050 0.7866
0.5642 6.0 60 0.6861 {'precision': 0.6413373860182371, 'recall': 0.7824474660074165, 'f1': 0.7048997772828508, 'number': 809} {'precision': 0.3382352941176471, 'recall': 0.19327731092436976, 'f1': 0.24598930481283424, 'number': 119} {'precision': 0.7156357388316151, 'recall': 0.7821596244131456, 'f1': 0.7474203678779722, 'number': 1065} 0.6710 0.7471 0.7070 0.7846
0.4894 7.0 70 0.6645 {'precision': 0.6925601750547046, 'recall': 0.7824474660074165, 'f1': 0.73476494486361, 'number': 809} {'precision': 0.3106796116504854, 'recall': 0.2689075630252101, 'f1': 0.28828828828828823, 'number': 119} {'precision': 0.7319762510602206, 'recall': 0.8103286384976526, 'f1': 0.7691622103386809, 'number': 1065} 0.6958 0.7667 0.7295 0.7993
0.4396 8.0 80 0.6633 {'precision': 0.68580375782881, 'recall': 0.8121137206427689, 'f1': 0.7436332767402377, 'number': 809} {'precision': 0.25210084033613445, 'recall': 0.25210084033613445, 'f1': 0.25210084033613445, 'number': 119} {'precision': 0.7321131447587355, 'recall': 0.8262910798122066, 'f1': 0.776356418173798, 'number': 1065} 0.6876 0.7863 0.7336 0.8033
0.381 9.0 90 0.6612 {'precision': 0.7039473684210527, 'recall': 0.7935723114956736, 'f1': 0.7460778617083091, 'number': 809} {'precision': 0.2920353982300885, 'recall': 0.2773109243697479, 'f1': 0.28448275862068967, 'number': 119} {'precision': 0.7660869565217391, 'recall': 0.8272300469483568, 'f1': 0.7954853273137698, 'number': 1065} 0.7154 0.7807 0.7466 0.8040
0.3737 10.0 100 0.6725 {'precision': 0.6994652406417112, 'recall': 0.8084054388133498, 'f1': 0.7499999999999999, 'number': 809} {'precision': 0.2818181818181818, 'recall': 0.2605042016806723, 'f1': 0.27074235807860264, 'number': 119} {'precision': 0.7605512489233419, 'recall': 0.8291079812206573, 'f1': 0.7933513027852651, 'number': 1065} 0.7108 0.7868 0.7468 0.8067
0.3174 11.0 110 0.6862 {'precision': 0.7039827771797632, 'recall': 0.8084054388133498, 'f1': 0.7525891829689298, 'number': 809} {'precision': 0.2713178294573643, 'recall': 0.29411764705882354, 'f1': 0.28225806451612906, 'number': 119} {'precision': 0.7706342311033884, 'recall': 0.8328638497652582, 'f1': 0.8005415162454873, 'number': 1065} 0.7134 0.7908 0.7501 0.8033
0.2976 12.0 120 0.6907 {'precision': 0.7048648648648649, 'recall': 0.8059332509270705, 'f1': 0.7520184544405998, 'number': 809} {'precision': 0.2926829268292683, 'recall': 0.3025210084033613, 'f1': 0.2975206611570248, 'number': 119} {'precision': 0.7772887323943662, 'recall': 0.8291079812206573, 'f1': 0.8023625624716039, 'number': 1065} 0.7193 0.7883 0.7522 0.8081
0.2799 13.0 130 0.6973 {'precision': 0.7105549510337323, 'recall': 0.8071693448702101, 'f1': 0.755787037037037, 'number': 809} {'precision': 0.31451612903225806, 'recall': 0.3277310924369748, 'f1': 0.32098765432098764, 'number': 119} {'precision': 0.7857777777777778, 'recall': 0.8300469483568075, 'f1': 0.8073059360730593, 'number': 1065} 0.7269 0.7908 0.7575 0.8066
0.2597 14.0 140 0.7004 {'precision': 0.7083786724700761, 'recall': 0.8046971569839307, 'f1': 0.7534722222222221, 'number': 809} {'precision': 0.2803030303030303, 'recall': 0.31092436974789917, 'f1': 0.29482071713147406, 'number': 119} {'precision': 0.781195079086116, 'recall': 0.8347417840375587, 'f1': 0.8070812528370404, 'number': 1065} 0.7204 0.7913 0.7542 0.8073
0.2627 15.0 150 0.7008 {'precision': 0.7050592034445641, 'recall': 0.8096415327564895, 'f1': 0.7537399309551209, 'number': 809} {'precision': 0.2803030303030303, 'recall': 0.31092436974789917, 'f1': 0.29482071713147406, 'number': 119} {'precision': 0.7809187279151943, 'recall': 0.8300469483568075, 'f1': 0.8047337278106509, 'number': 1065} 0.7187 0.7908 0.7530 0.8087

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
1
Safetensors
Model size
113M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for neo11542/layoutlm-funsd

Finetuned
(145)
this model