A Named Entity Recognition (NER) model to extract SKILL, EXPERIENCE and BENEFIT from job adverts.
Feature | Description |
---|---|
Name | en_skillner |
Version | 3.7.1 |
spaCy | >=3.7.4,<3.8.0 |
Default Pipeline | tok2vec , tagger , parser , attribute_ruler , lemmatizer , ner |
Components | tok2vec , tagger , parser , senter , attribute_ruler , lemmatizer , ner |
Vectors | 514157 keys, 514157 unique vectors (300 dimensions) |
Sources | OntoNotes 5 (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston) ClearNLP Constituent-to-Dependency Conversion (Emory University) WordNet 3.0 (Princeton University) Explosion Vectors (OSCAR 2109 + Wikipedia + OpenSubtitles + WMT News Crawl) (Explosion) |
License | MIT |
Author | nestauk |
Label Scheme
View label scheme (3 labels for 1 components)
Component | Labels |
---|---|
ner |
SKILL , EXPERIENCE , BENEFIT |
Accuracy
Type | Score |
---|---|
ENTS_P |
59.19 |
ENTS_R |
57.58 |
ENTS_F |
58.38 |
SKILL_P |
72.19 |
SKILL_R |
72.62 |
SKILL_F |
72.40 |
EXPERIENCE_P |
52.14 |
EXPERIENCE_R |
41.48 |
EXPERIENCE_F |
46.20 |
BENEFIT_P |
75.61 |
BENEFIT_R |
46.27 |
BENEFIT_F |
57.41 |
- Downloads last month
- 50
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Evaluation results
- NER Precisionself-reported0.592
- NER Recallself-reported0.576
- NER F Scoreself-reported0.584