|
--- |
|
library_name: transformers |
|
license: other |
|
base_model: apple/mobilevit-xx-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: KDRSSC_ViT2MobileViT-xx-small |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# KDRSSC_ViT2MobileViT-xx-small |
|
|
|
This model is a fine-tuned version of [apple/mobilevit-xx-small](https://huggingface.co/apple/mobilevit-xx-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6274 |
|
- Accuracy: 0.8495 |
|
- Precision: 0.8504 |
|
- Recall: 0.8501 |
|
- F1: 0.8440 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 1.6963 | 1.0 | 148 | 1.3476 | 0.596 | 0.6092 | 0.5736 | 0.5557 | |
|
| 1.2335 | 2.0 | 296 | 1.0216 | 0.725 | 0.7180 | 0.7135 | 0.6918 | |
|
| 0.9693 | 3.0 | 444 | 0.8330 | 0.776 | 0.7560 | 0.7699 | 0.7481 | |
|
| 0.8246 | 4.0 | 592 | 0.7345 | 0.812 | 0.8091 | 0.8042 | 0.7889 | |
|
| 0.7393 | 5.0 | 740 | 0.6836 | 0.828 | 0.8084 | 0.8223 | 0.8070 | |
|
| 0.6895 | 6.0 | 888 | 0.6504 | 0.831 | 0.8245 | 0.8253 | 0.8134 | |
|
| 0.6528 | 7.0 | 1036 | 0.6252 | 0.859 | 0.8546 | 0.8571 | 0.8461 | |
|
| 0.6303 | 8.0 | 1184 | 0.6089 | 0.856 | 0.8506 | 0.8554 | 0.8444 | |
|
| 0.6138 | 9.0 | 1332 | 0.6002 | 0.863 | 0.8567 | 0.8632 | 0.8519 | |
|
| 0.6067 | 10.0 | 1480 | 0.6003 | 0.863 | 0.8596 | 0.8624 | 0.8521 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0 |
|
- Datasets 3.0.0 |
|
- Tokenizers 0.19.1 |
|
|